**神经网络(Neural Network)**是一种受人类大脑启发的计算模型,是深度学习的核心构成。它模仿生物神经元之间的连接,能够通过大量数据的训练完成分类、回归、生成等任务。以下从概念、结构、工作原理和常见类型等方面详细解释神经网络。
1. 神经网络的定义
神经网络是由多个**人工神经元(Artificial Neurons)**组成的层状结构。每个神经元接收输入信号,经过加权求和和激活函数处理,生成输出信号。神经网络通过层层处理,提取数据的特征,用于完成复杂任务。
特点:
- 能够自动学习复杂的数据模式。
- 具有良好的容错性和自适应性。
- 通过训练可以在不同领域表现卓越。
2. 神经网络的基本组成
(1) 神经元(Neuron)
人工神经元是神经网络的基本单元,类似于大脑中的生物神经元。
每个神经元接收一个或多个输入,并执行以下操作:
-
加权求和:将输入乘以权重并求和。
z=w1x1+w2x2+⋯+wnxn+bz = w_1x_1 + w_2x_2 + \dots + w_nx_n + bz=w1x1+w2x2+⋯+wnxn+b其中,wiw_iwi是权重,xix_ixi是输入,bbb是偏置。
-
激活函数:将结果 zzz 输入到一个非线性激活函