14天阅读挑战赛
努力是为了不平庸~
算法知识点
时间复杂度: 算法运行需要的时间,一般将算法的执行次数作为时间复杂度的度量标准。
空间复杂度: 算法占用的空间大小。一般将算法的辅助空间作为衡量空间复杂度的标准。
算法占用的存储空间包括:
- 输入\输出数据
- 算法本身
- 额外需要的辅助空间
算法题目来源
算法题目描述
【题目描述】
哥德巴赫猜想的命题之一是:大于6 的偶数等于两个素数之和。编程将6~100所有偶数表示成两个素数之和。
【输入】
(无)
【输出】
分行输出:
例如:
6=3+3
8=3+5
…
(每个数只拆开一次,请保证第一个加数最小)
题目分析
首先,要看100以内大于等于6的偶数有多少个,6~100内的偶数有48个,即i=6,8,10,12 … 100.其次对偶数分解,期间分解到的最后一组中有一个数为1,1既不为素数也不为合数,因此可以去掉最后一组。判断分解可能得到的数为素数,把结果存储下来,下次判断时调用上次的结果,防止素数重复判断。
模板代码
#include<iostream>
#include<math.h>
using namespace std;
int prime(int n); //判断是否均为素数
int main(void)
{
int i,n;
//对100大于等于6的偶数判断,从6开始,每次+2
for(i=6;i<=100;i+=2)
{
for(n=2;n<i;n++) //将偶数i分解为两个整数,一个整数是n,一个是n-1
if(prime(n)) //判断第一个数是否为素数
if(prime(i-n)) //判断第二个数是否为素数
{
cout<<i<<"="<<n<<"+"<<i-n<<endl;
break;
}
}
}
//判断是否为素数
int prime(int i)
{
if(i<=1) return 0;
if(i==2) return 1;
for(int j=2;j<i-1;j++)
if(i%j==0) return 0;
return 1;
}
做题过程中遇到的bug及解决方案
只对第一个数进行素数判断,而第二个数没有进行判断,新添加if语句进行判断
相关算法题型题目总结
该题也是运用了递归思想,只要找到其中递归关系,列出表达式,问题就会简单许多,
类似的有神奇的图字序列,爱因斯坦的阶梯等等,都涉及到递归思想
读书笔记
学习算法更多的不是停留在脑子上,更多的是要自己去实践,只有自己真正去写算法时,才会遇到自己真正不会的地方,针对问题的地方多加练习,才能掌握算法的思想。
多看多写多想多练,才能学好算法。
萌新创作,如有错误请大佬指出