2021.8.30 三角形最小路径和

动态规划与空间优化:求解三角形最小路径和
这篇博客介绍了如何使用动态规划解决寻找三角形自顶向下的最小路径和问题。文中提供了三种不同的解决方案,从初始的二维数组实现,到通过滚动数组优化空间复杂度,再到直接在原三角形上进行修改的高效方法。每种方法都详细解释了思路,并以样例【{-1}

题目描述:

给定一个三角形 triangle ,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 i 或 i + 1 。

方法一:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        int n = triangle.size();
        vector<vector<int>> f(n);
        for (int i = 0; i < n; i++)
        {
            f[i].resize(triangle[i].size());
        }
        f[0][0] = triangle[0][0];
        for (int i = 1; i < n; i++)
        {
            for (int j = 0; j < triangle[i].size(); j++)
            {
                int m = triangle[i - 1].size();
                if (j == 0) //当前最左边的结点只能由上一条边的最左边的结点走到
                {
                    f[i][j] = f[i - 1][j] + triangle[i][j];
                }
                else if (j > 0 && j < m) 
                {
                    f[i][j] = min(f[i - 1][j - 1] + triangle[i][j], f[i - 1][j] + triangle[i][j]);
                }
                else if (j == m)    //当前最右边的结点只能由上一条边的最右边的结点走到
                {
                    f[i][j] = f[i - 1][j - 1] + triangle[i][j];
                }
            }
        }
        int minx = INT_MAX;
        for (int i = 0; i < f[n - 1].size(); i++)
        {
            minx = min(f[n - 1][i], minx);
        }
        return minx;
    }
};

这道题用贪心法是不行的,例如样例【{ {-1},{2,3},{1,-1,-3} }】,每次走选取数值最小的结点,得到的结果是0,然而正确答案是-1。

设f[i][j]为走到第i行第j个数字所需要的最小路径和(假设从第0行开始,每行从第0个数字开始),那么f[i][j]的值取决于上一行与它相邻的f[i-1][j-1]和f[i-1][j]中的最小值,当然如果j是边界值需要单独考虑,最后f[n-1]中最小的值即为该三角形的最小路径和。

方法一的改进版:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        int n = triangle.size();
        vector<int> f(n);
        f[0] = triangle[0][0];
        for (int i = 1; i < n; i++)
        {
            for (int j = triangle[i].size(); j >= 0; j--)
            {
                int m = triangle[i - 1].size();
                if (j == m) //当前最右边的结点只能由上一条边的最右边的结点走到
                {
                    f[j] = f[j - 1] + triangle[i][j];
                }
                else if (j > 0 && j < m)
                {
                    f[j] = min(f[j - 1] + triangle[i][j], f[j] + triangle[i][j]);
                }
                else if (j == 0)    //当前最左边的结点只能由上一条边的最左边的结点走到
                {
                    f[j] = f[j] + triangle[i][j];
                }
            }
        }
        int minx = INT_MAX;
        for (int i = 0; i < f.size(); i++)
        {
            minx = min(f[i], minx);
        }
        return minx;
    }
};

注意到实际上每次计算动态转移方程时,需要用到的只有f[i-1]这一行的数据,所以实际上只需使用一维数组,利用滚动数组的思想,能够大大提高空间利用率。另外每次遍历滚动时,对于三角形triangle的每一行应该改成从后往前遍历,否则可能会导致后续所需的数据被覆盖。

方法一的再进一步改进版:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        for (int i = triangle.size()-2; i >= 0; i--)
        {
            for (int j = 0; j < triangle[i].size(); j++)
            {
                triangle[i][j] += min(triangle[i + 1][j], triangle[i + 1][j + 1]);
            }
        }
        return triangle[0][0];
    }
};

哈哈,自己写完并改进之后心满意足地打开评论区,结果发现还有更强的解法,根本不需要另外开辟一个数组,直接在triangle上修改即可!而且从triangle的最后一行往上遍历,也省去了繁琐的边界条件判断!

做leetcode果真是有趣至极!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值