题目描述:
给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
方法一:
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> f(amount + 1, 0);
//f[j]表示可以凑成总金额为j的硬币组合数
f[0] = 1; //凑成0的一种方式,就是一个硬币也不取
for (int i = 0; i < coins.size(); i++)
{
for (int j = coins[i]; j <= amount; j++)
{
//与求最值的背包问题(如零钱兑换I)不同,这题求的是组合数,
//第一个f[j]中存储的数字是前一次遍历时的值,而前一次遍历时没有取第i件物品;
//相反,f[j - coins[i]]则代表了此次循环时在取第i件物品的情况下的组合数
f[j] = f[j] + f[j - coins[i]];
}
}
return f[amount];
}
};
相对于第一道的【零钱兑换】来说,这题反而还更简单不少,就是完全背包稍微改改而已。
这道题比较值得注意的就是f[0]初始化为1,因为一个硬币都不取也是一种取法。