
清华接手,YOLOv10问世:性能大幅提升,登上GitHub热榜
与 YOLOv9-C 相比,在性能相同的情况下,YOLOv10-B 的延迟减少了 46%,参数减少了 25%。此外,YOLO 中各个组件的设计缺乏全面彻底的检查,导致明显的计算冗余并限制了模型的能力。它被认为是计算机视觉领域的突破性框架,以实时的端到端目标检测能力而闻名,通过提供结合效率和准确性的强大解决方案,延续了 YOLO 系列的传统。研究团队为 YOLO 提出了整体效率 - 准确率驱动的模型设计策略,从效率和准确率两个角度全面优化 YOLO 的各个组件,大大降低了计算开销并增强了模型能力。
























