数据结构与算法(空间复杂度)

回顾

O(1)

int i = 8;
int j = 6;
int sum = i + j;

只有代码的执行时间不随n的增大而增长,这样代码的时间复杂度我们都记作O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行代码,其时间复杂度也是O(1)。

O(log n)、O(n log n)

i = 1;
while (i <= n) {
	i = i + 2;
}

由于第三行是循环次数最多的,分析上面代码可以看出,变量i的值从1开始取,每循环一次就乘以2.当大于n时,循环结束。显然是个等比数列:

2^0 、 2^1 、 2^2 、 …… 、 2^k 、…… 、 2^x = n

所以,我们只需要知道x值是多少,就知道这行代码执行的次数了。通过2^x = n求解x这个问题。故 x = log 2 ^ (n),所以这段代码的时间复杂度就是O(log 2 ^ (n))。

分析以下代码的时间复杂度:

i = 1;
while (i <= n) {
	i = i * 3;
}

通过以上的分析显然可以得出时间复杂度是O(log 3 ^ (n))。

综上可得,不管是以2为底还是3为底甚至还是10为底,我们都可以把所有的对数阶的时间复杂度都记为O(log n)。
因为对数之间是可以转换的,log 3 ^ (n) 等于 (log 3 ^ (2))*log 2 ^ (n),所以O(log 3 ^ (n)) = O(C * log 2 ^ (n)),其中C = log 3 ^ (2) 为常量,忽略常量后就得O(C f(n)) = O(f(n))。所以,O(log 2 ^ (n)) = O(log 3 ^ (n))。因此,我们再忽略“底”,统一可得O(log n)。

O(m+n)、O(m * n)

直接上代码

int cal(int m, int n) {
	int sum_1 = 0;
	int i = 1;
	for(; i < m; ++i) {
		sum_1 = sum_1 + i;
	}
	int sum_2 = 0;
	int j = 1;
	for(; j < n; ++j) {
		sum_2 = sum_2 +j;
	}
	return sum_1 + sum_2;
}

我们可以看出,m和n是两个数据规模,我们无法看出谁的量级最大,因此时间复杂度分析时我们无法再用加法法则。因此,以上代码的时间复杂度为O(m + n)。
所以 加法法则改为: T1(m) + T2(n) = O1(f(m) + g(n))。但是乘法法则依然有效:T1(m) * T2(n) = O(f(m) * f(n))。

空间复杂度

分析以下代码的复杂度

void print(int n) {
	int i = 0;
	int[] a = new int[n];
	for ( i; i < n; ++i) {
		a[i] = i * i;
	}
	for( i = n - 1; i >= 0; --i) {
		print out a[i];
	}
}

跟时间复杂度分析一样,可以看出,第2行代码中,我们申请了一个空间存储变量i,但是常量阶的,与数据规模无关,忽略。第3行代码申请了一个大小为n的int数组 ,因此,整段代码的空间复杂度为O(n)。

我们常见的空间复杂度就是O(1)、O(n)、O(n²)。对数阶的复杂度平时用不到。

总结,从低阶到高阶依次为:O(1)、O(logn)、O(n)、O(nlogn)、O(n²)。如下图所示:

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值