周末的比赛还不开始,先拿小题练练
这是个套娃题,一共分4小块,
import gmpy2
from Crypto.Util.number import getPrime, isPrime, bytes_to_long
from secret import FLAG, E1, E2, P, Q1, Q2
def next_prime(num: int) -> int:
num = num + 2 if num % 2 else num + 1
while not isPrime(num):
num += 2
return num
p = getPrime(1024)
q = next_prime(getPrime(16) * p + 38219)
n = p * q
c = pow(E1, 65537, n)
print(f'n = {n}')
print(f'c = {c}')
第一块给了q = a*p + b 这里a是16位,很小一个数,b因为素数间隔问题范围更小,所以可以直接爆破,利用求根公式
判断是否为平方根求解
for a in range(0x8000, 0x10000):
if not is_prime(a):
continue
print(a)
for b in range(38219, 38219+1000):
if is_square(b*b+4*a*n):
p = (-b+iroot(b*b+4*a*n, 2)[0])//2//a
if is_prime(p):
print(p)
exit()
q = n//p
E1 = pow(c,invert(0x10001, (p-1)*(q-1)) ,n)
第二块给了一组n和c
assert E2.bit_length() == 69
ns = [getPrime(1024) * getPrime(1024) for _ in range(3)]
cs = [pow(E2, 89, n) for n in ns]
print(f'ns = {ns}')
print(f'cs = {cs}')
显然是用中国剩余定理
ns = [15863230586500684911356384742123404120213699052018048588650392009927565369685497256344682150189923131009586323640507773706997704860898682946308031020361302334248895233255911348365179153799197341744863134926804603973507415697810440916305092395180382239729550833607847524005391137474497849077097574452115379368463540087172800902210822143687014813631366360652583216269138116785489485772437870528892032119729929607857459621078790511144060710035933887337208301078892163837203412081114510143406013892393607932596921308889058909544584619676380766485493114814753878272881866907210235681877689493671668534251778397658670518117, 14144098469438619358682652828507744381697293556670717685553585719665002440476256008471235313826051740009083510860714991201047915737216102220242621674841600987122005914542061963618272275986835928673920375768272390912778741502655909281390948606467847118377641357547931472588836726339758576038273820470879637555458446243401248151675266602656677360819563744765522495640821496694918515669243614141704744848980746101569785439728585144841655665959389460512628800782742764147773150430552859331269667626942993392101897661719871375721143240270211821269260950380944670195863016621594387236339317938305273510719419578308449465183, 27563822879593503938377821960427219022565215631856333510782568496016547757945464794632272818101891677705256471714805217606503652132995136255720639088424576003650628211271025648183600635145895528466199068640094470078526413324708028578289949241288828542143203769199399500669311878391255837977932634772778594526940501234736059441483897017015324765266787399950699732518347518591167932031031320265136158304460199654008895095274754918153773566824931440342525688741289235153882699461549523425169846266597156773535163599640189457171272058311480951820887261040891344076039474315985825984444520336790670313179493074014037981261]
cs = [3833095607830862948079097323254872789586576953317671099752083261949616608759231291050566542764984974722790226120399722937104503590740358249900089784508490830379531632752169777949200718567033018577184658177019404903817920024468923715441355404672443007723525750768430895425376124679225715687382380114628103058312176343693900115638265002657622618744666247132114654135429040069316368839938881716554901593031901272992940200484460436193699175500376368456706998564064693820008778900344357745691652875500810447147088715289581351501876012044611990972521570253106671158207677490849249612002954497927762168699886110455354481924, 1502420121177211156091634258259634977709023894278792755694473756163084431123774101512866316989917922052023168401167212284219907272528117024670443698990238243030221117004372456475521502350404137469088570170885409265567084376069256924135270283335242133163303599239181417949980292944203204296598188175632723968779672994090788585343302473442389865459398142634104331743517384589200789331489394375604801951994831647339839112698394141328178967516636452592385248135340133712522135715943787590172334743893259621909532456281362868290556461907936774231166936915669816509378419892149164552548131776979706381641477878931403040942, 8992204063713908492214256291861339175525948946919629972908439132005643626148678347198381531633907182877152728077958345519083406637446972079387161726967295886447791613166577391233866583354793842121902234644830640050181130381996083089350911224037154798259291124104894554037604500881250119806371348673833105103600782286898276354573884788251542211434143476774391457587885772379990104835187104619922442613860682792470389490804228050671124495925536024571104944112397143299499508504917890140939438891891453283594000764399193028606955089853654071198909973555844004685149713774167524224100487937899126480545681565581673958854]
x = crt(cs,ns)
E2 = x.nth_root(89)
第三步看上去是用coppersmith求P但是未知有点多,不过仔细看后边,显然这步是多余的
qq = getPrime(1024)
nn = P * qq
qqq = qq >> 460 << 460
print(f'nn = {nn}')
print(f'qqq = {qqq}')
第4步这里给出有公因子的两个n显然直接求gcd比求一个位数过大的coppersmith要容易得多
assert len(FLAG) == 42
n1 = P * Q1
n2 = P * Q2
c1 = pow(bytes_to_long(FLAG), E1, n1)
c2 = pow(bytes_to_long(FLAG), E2, n2)
print(f'n1 = {n1}')
print(f'n2 = {n2}')
print(f'c1 = {c1}')
print(f'c2 = {c2}')
这个需要几步,因为后边E的问题处理起来麻烦点。
第1步是求因子,这个先用gcd求出P就完成了,然后发现E与Phi有公因子35
n1 = 21655617838358037895534605162358784326495251462447218485102155997156394132443891540203860915433559917314267455046844360743623050975083617915806922096697304603878134295964650430393375225792781804726292460923708890722827436552209016368047420993613497196059326374616217655625810171080545267058266278112647715784756433895809757917070401895613168910166812566545593405362953487807840539425383123369842741821260523005208479361484891762714749721683834754601596796707669718084343845276793153649005628590896279281956588607062999398889314240295073524688108299345609307659091936270255367762936542565961639163236594456862919813549
n2 = 24623016338698579967431781680200075706241014384066250660360949684385831604822817314457973559632215801205780786144608311361063622813017396858888436529116737754653067203843306015767091585697803364656624926853551997229897087731298797904208292585562517602132663331748784390752958757661484560335406769204491939879324079089140420467301773366050084810282369044622442784113688062220370531522036512803461607049619641336524486507388232280683726065679295742456158606213294533956580462863488082028563360006966912264908424680686577344549034033470952036766850596897062924137344079889301948258438680545785139118107899367307031396309
c1 = 2615722342860373905833491925692465899705229373785773622118746270300793647098821993550686581418882518204094299812033719020077509270290007615866572202192731169538843513634106977827187688709725198643481375562114294032637211892276591506759075653224150064709644522873824736707734614347484224826380423111005274801291329132431269949575630918992520949095837680436317128676927389692790957195674310219740918585437793016218702207192925330821165126647260859644876583452851011163136097317885847756944279214149072452930036614703451352331567857453770020626414948005358547089607480508274005888648569717750523094342973767148059329557
c2 = 6769301750070285366235237940904276375318319174100507184855293529277737253672792851212185236735819718282816927603167670154115730023644681563602020732801002035524276894497009910595468459369997765552682404281557968383413458466181053253824257764740656801662020120125474240770889092605770532420770257017137747744565202144183642972714927894809373657977142884508230107940618969817885214454558667008383628769508472963039551067432579488899853537410634175220583489733111861415444811663313479382343954977022383996370428051605169520337142916079300674356082855978456798812661535740008277913769809112114364617214398154457094899399
E1 = 377312346502536339265
E2 = 561236991551738188085
from gmpy2 import *
from Crypto.Util.number import long_to_bytes
from functools import reduce
P = gcd(n1,n2)
Q1 = n1//P
Q2 = n2//P
phi1 = (P-1)*(Q1-1)
phi2 = (P-1)*(Q2-1)
#E与PHI不互素,因子为35
vv1 = gcd(E1, phi1)
vv2 = gcd(E2, phi2)
#vv1 == vv2 == 35
然后处理这个35,先将E除掉35后求出m^35的值,然后分别对P,Q1,Q2取模得到3个m,然后用中国剩余定理求出m4
#对E除35后求m1,m2
m1 = pow(c1, invert(E1//vv1, phi1), n1)
m2 = pow(c2, invert(E2//vv1, phi2), n2)
#分别模3个因子得到m1,m2,m3
m3 = m1%P
m2 = m2%Q2
m1 = m1%Q1
#用中国剩余定理求m4
def chinese_remainder(n, a):
sum = 0
prod = reduce(lambda a, b: a * b, n)
for n_i, a_i in zip(n, a):
p = prod // n_i
sum += a_i * invert(p, n_i) * p
return int(sum % prod)
m4 = chinese_remainder([Q1,Q2,P],[m1,m2,m3])
这里再利用另外两个因子Q1,Q2组成n3,以7为幂,求m5,这样求出的结果就是5次幂的值,再开5次幂就结束了,
#由另外两个因子组成新n,并以7为E求出m5(35先求7再开根号求5)
n3 = Q1*Q2
phi3 = (Q1-1)*(Q2-1)
m5 = pow(m4, invert(7, phi3), n3)
m6 = iroot(m5,5)[0]
print(long_to_bytes(m6))