- 博客(16)
- 收藏
- 关注
原创 可视化seaborn库
导入seaborn包直方图:sns.displot(data['Total day minutes'])密度图data[features].plot(kind="density",subplots = True,layout = (1,2),sharex = False,figsize=(10,4))##kind:图是表示密度函数的##subplots:将两组数据进行分开处理##layout:多个图排列方式##箱图最左最右为边界,最大值最小值:不在之间的数为离散点.
2021-09-12 09:07:54 192
原创 沐神深度学习笔记
import torchimport numpy as npx = torch.arange(12)print(x)print("类型,,数组形状",x.shape)print("x的种类,是个标量",x.numel)print("change x shape\n",x.reshape(3,4))x1 = torch.zeros(2,3,4)print("全0,数组\n",x1)x2 = torch.ones(2,3,4)print("全1\n",x2)####特定数组x3 = t.
2021-08-25 12:11:32 282
原创 机器学习初步模型
1、回归: 假设已经认为该数据为三次方数据:import statsmodels.api as smimport matplotlib.pyplot as pltimport pandas as pdimport numpy as npnsample = 100#x的取值x = np.linspace(0, 10, nsample)#列出x的列的组成X = np.column_stack((x, x**2,x**3))#给x加上一个常数X = ...
2021-08-23 22:02:00 207
原创 7、机器学习初学
1、数据集将一个整的的数据集分为三个集合 1、训练集:训练模型的算法设置分类器的参数训练分类模型 2、验证集:训练模型对验证集进行预测,看模型的准确率(模型通过自学习得来的不需要这个,分连个集合就可以) 3、测试集:测试模型的性能2、机器学习分类: 监督学习:给定的一个已知的函数,输入新的数据,将预测结果返回给用户 分类:将输入的新数据进行分类,离散型变量...
2021-06-07 22:35:18 78
原创 5、代码多次用之---词云和分词
import jiebaimport wordcloud1、首先要打开文件#打开中文文件f = open("new.txt","r",encoding="utf-8")t = f.read()f.close()2、排除符号ls = jieba.lcut(t)ls = " ".join(ls)for word in ls: #英文状态下的符号替换 if word in "`-=\][';.,/~!@#$%^&*()_+|}{:?><\"\.
2021-05-18 18:08:58 100
原创 4、文件的处理
#打开方式 读or写 二进制or文件#r 只读模式#w 覆盖写文件#x 创建写文件,,文件不存在创建,存在则返回错误#a 追加写模式 文件存在在后面进行写,若不存在则创建#b 二进制文件#t 文本文件#+ 同时读写能力 #word = open('a.txt','a') #默认只读rt#读文件word.read() #word.read(size)word.readline() #读入一行word.readlines() #所有行,每一行都是一个元组 .
2021-05-17 22:25:50 81
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人