C. Good String
思路:逆序遍历一遍字符串,如果a[i]==a[i-1],将a[i]替换掉,i--;如果a[i]!=a[i-1],i-=2;
最后剩下的字符数量是奇数的话就再删除第一个字符。注意,这道题不宜正序遍历,要不然指针
在移动的时候很难确定。
#include<iostream>
#include<string>
using namespace std;
const int N=2e5+10;
int n;
char a[N];
int main()
{
while(cin>>n)
{
scanf("%s",a);
int cnt=0;
for(int i=n-1;i>=0;)
{
if(a[i]==a[i-1])
{
a[i]='A';
i--;
cnt++;
}
else
i-=2;
}
if((n-cnt)%2)
{
a[0]='A';
cnt++;
}
cout<<cnt<<endl;
if(cnt==n)
cout<<endl;
else
{
for(int i=0;i<n;i++)
{
if(a[i]!='A')
cout<<a[i];
}
cout<<endl;
}
}
}
D. Almost All Divisors
题意:给出某个数的全部因子(除了1和它本身),求出这个数,如果不存在或给出的因子不全
输出-1。
思路:把给出的因子排序,在对称位置的乘积就是要所求的数,所以比较每个对此位置上的乘积
是否相等,有不相等的直接输出-1,结束判断。之后再算出该数的因子个数,与题目给出的进行
比较,个数不相等的话,答案是-1。
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=310;
ll d[N];
int main()
{
int t,n;
cin>>t;
while(t--)
{
cin>>n;
for(int i=0;i<n;i++)
cin>>d[i];
sort(d,d+n);
ll s=1;
int flag=0;
if(n%2==1)
s=d[n/2]*d[n/2];
else
s=d[0]*d[n-1];
for(ll i=0,j=n-1;i<j;i++,j--)
{
if(d[i]*d[j]!=s)
{
flag=1;
break;
}
}
if(flag)
cout<<-1<<endl;
else
{
int sum=0;
for(ll i=2;i<=s/i;i++)
{
if(s%i==0)
{
if(s/i!=i)
sum+=2;
else
sum+=1;
}
}
if(sum!=n)
cout<<-1<<endl;
else
cout<<s<<endl;
}
}
return 0;
}
E. Two Arrays and Sum of Functions
思路:a的位置是固定的,所以对于每一个a[i]在这个式子中会出现i*(n-i+1)次,即会有i*(n-i+1)次a[i]*b[i],题目要求的是最小的累计和,所以只需要把两个数组中最大的和最小的
依次相乘即可,最后在求和。
#include<iostream>
#include<algorithm>
typedef long long ll;
const ll mod=998244353;
using namespace std;
const int N=2e5+10;
ll b[N],a[N];
ll sum[N],n;
int main()
{
scanf("%d",&n);
for(ll i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
a[i]=i*(n-i+1)*a[i];
}
for(ll i=1;i<=n;i++)
scanf("%lld",&b[i]);
sort(b+1,b+n+1);
sort(a+1,a+n+1);
ll ans=0;
for(ll i=1;i<=n;i++)
{
a[i]%=mod;
sum[i]=a[i]*b[n-i+1];
sum[i]%=mod;
//ans=(ans+a[i]%mod*b[n-i+1])%mod;
}
for(int i=1;i<=n;i++)
{
ans+=sum[i];
ans%=mod;
}
printf("%lld\n",ans);
return 0;
}