- 博客(33)
- 资源 (1)
- 问答 (1)
- 收藏
- 关注
原创 【SpringCloud微服务全家桶学习笔记-GateWay网关(微服务入口)】
API网关为微服务架构中的服务提供了统一的访问入口,客户端通过API网关访问相关服务。API网关的定义类似于设计模式中的门面模式,它相当于整个微服务架构中的门面,所有客户端的访问都通过它来进行路由及过滤。它实现了请求路由、负载均衡、校验过滤、服务容错、服务聚合等功能。
2024-03-11 16:07:06 1102
原创 【SpringCloud微服务全家桶学习笔记-Hystrix(服务降级,熔断,接近实时的监控,服务限流等)】
熔断机制是应对雪崩效应的一种微服务链路保护机制。当扇出链路的某个微服务出错不可用或者响应时间太长时,会进行服务的降级,进而熔断该节点微服务的调用,快速返回错误的响应信息。当检测到该节点微服务调用响应正常后,恢复调用链路。在Spring Cloud框架里,熔断机制通过Hystrix实现。Hystrix会监控微服务间调用的状况,当失败的调用到一定阈值,缺省是5秒内20次调用失败,就会启动熔断机制。熔断机制的注解是@HystrixCommand。
2023-11-22 22:07:12 549
原创 【SpringCloud微服务全家桶学习笔记-服务调用Ribbon/openFeign】
前面在使用Ribbon+RestTemplate时,利用RestTemplate对http请求的封装处理,形成了一套模版化的调用方法。但是在实际开发中,由于对服务依赖的调用可能不止一处,往往一个接口会被多处调用,所以通常都会针对每个微服务自行封装一些客户端类来包装这些依赖服务的调用。所以,Feign在此基础上做了进一步封装,由他来帮助我们定义和实现依赖服务接口的定义。在Feign的实现下,我们只需创建一个接口并使用注解的方式来配置它(以前是Dao接口上面标注Mapper注解,现在是一个微服务接口上面标注一个
2023-09-21 13:55:15 464
原创 【SpringCloud微服务全家桶学习笔记-服务注册zookeeper/consul】
这些功能中的每一个都可以根据需要单独使用,也可以一起使用以构建全方位的服务网格,总之Consul提供了一种完整的服务网格解决方案。如果 ZooKeeper 集群的某个节点的数据发生变更,则会通知其它 ZooKeeper 节点同时执行更新,就得等着大家(超过半数)都写完了才行,这写入的性能就比较差了。临时节点,当服务关闭一段时间未响应后,zookeeper自动剔除服务,当重新启动服务后,又会出现新的注册流水号。作为中间件,强依赖于另一个中间件,搭建kafk集群,需要先搭建zookeeper集群。
2023-09-14 14:06:44 453
原创 【Tomcat7部署Springboot版本不兼容问题】
如果你的应用程序中有多个验证框架的依赖项(如Hibernate Validator和Apache BVal),请确保它们的版本兼容,并且没有冲突。检查你的应用程序的依赖项配置文件(如pom.xml或build.gradle)中的验证框架版本,并确保与Tomcat 7兼容。Tomcat 7不是原生支持Spring Boot的,但你可以使用适当的配置和调整来在Tomcat 7上部署Spring Boot应用程序。检查你的应用程序的依赖项配置文件,并确保验证框架的依赖项已正确声明,并且没有遗漏或错误的版本。
2023-09-12 11:33:58 677 1
原创 【SpringCloud微服务--Eureka服务注册中心】
微服务架构是一种架构模式,它提倡将单一应用程序划分成一组小的服务,服务之间互相协调、互相配合,为用户提供最终价值。每个服务运行在其独立的进程中,服务与服务间采用轻量级的通信机制互相协作(通常是基于HTTP协议的RESTful API)。每个服务都围绕具体业务进行构建,并且能够被独立的部署到生产环境、类生产环境等。另外,应当尽量避免统一的、集中式的服务管理机制,对具体的一个服务而言应根据业务上下文,选择合适的语言、工具对其进行构建主流技术框架功能框架服务注册中心Nacos服务调用服务调用2服务降级。
2023-09-07 14:47:33 401
原创 【Auto-GPT云部署】
Chat-GPT (Generative Pretrained Transformer)是由OpenAI提出的一种自然语言处理技术,是基于Transformers和预训练机制的大规模语言模型。与传统的基于规则或基于统计的自然语言处理方法不同,Chat-GPT使用深度神经网络自动学习自然语言的语义、语法和风格等知识,并通过上下文生成连贯、合理、人类可读的文本。Chat-GPT是目前最先进和最流行的对话生成模型之一,被广泛应用于人机交互、聊天机器人、问答系统、文章摘要等多个领域。Auto-GPT的使用及部署
2023-04-27 21:19:42 1020 1
原创 【机器学习】二分类算法实现及算法精度比较
机器学习算法有很多,本学期及本实验以分类算法为主,讲解了经典的分类算法,如感知机,knn,朴素贝叶斯,决策树,逻辑斯蒂回归,最大熵模型,SVM(支持向量机),AdaBoost ,k-means(聚类算法)等,通过对于分类算法的学习,我学习到了各算法的原理以及实现,还有与其他算法的比较,及一些相关知识点:......
2022-08-02 17:34:47 7670 2
原创 【Matlab 图像处理】图像平滑系统GUI
因此产生了很多关于图像平滑处理的算法。平滑从信号处理的角度看就是去除其中的高频信息,保留低频信息。因此我们可以对图像实施低通滤波。低通滤波可以去除图像中的噪声,对图像进行平滑。对于不同的噪声,不同的图像,以及对于图像不同的处理要求,我们有很多方法去实现图像平滑。在本系统中,集成了大部分常用的平滑算法,如高斯滤波,均值滤波,双边滤波,中值滤波,理性低通滤波,高斯低通滤波,以及巴特沃斯低通滤波等。关于频域低通滤波的平滑滤波还有指数低通滤波,梯形低通滤波。除此之外还有很多图像平滑算法,如基于偏微分方程的平滑滤波。
2022-06-29 22:22:26 5638
原创 前端Android+后端springMVC+持久层MyBitics+数据库MySql 学生选课系统
一个基于安卓的学生选课系统,界面友好,功能完善;包括学生端与管理员端,管理员端角色包括普通管理员和超级管理员前端 Android 后端 springMVC+MyBatis + MySql完成数据交互点击启动MARVEL选课,进入延迟五秒欢迎界面,用户可选择五秒结束自动跳转至登录界面,也可点击跳过直接进入登陆界面登陆界面包含协议查看,注册及忘记密码跳转链接,点击可进入相关界面登录输入学号与密码,点击登录按钮将学号与密码传向后端在后端进行验证,验证通过可进入学生主页界面,不通过择显示密码或学号输入错误。
2022-06-18 20:13:17 1747 5
原创 【卷积神经网络实例 实现数字图像分类】
使用VGG19网络模型实现图像分类:VGGNet是牛津大学计算机视觉组和Google DeepMind公司一起研发的深度卷积神经网络,并取得了2014年Imagenet比赛定位项目第一名和分类项目第二名。该网络主要是泛化性能很好,容易迁移到其他的图像识别项目上,可以下载VGGNet训练好的参数进行很好的初始化权重操作,很多卷积神经网络都是以该网络为基础,比如FCN,UNet,SegNet等。vgg版本很多,常用的是VGG16,VGG19网络。常见的卷积神经网络结构如图所示。卷积层后面会使用 ReLU 等激活
2022-06-07 15:15:21 2155
原创 【python 报错module ‘scipy.misc‘ has no attribute ‘imsave‘】
我们可以看到报错的原因是在scipy.misc中找不到属性‘imsave’接下来我们拓展一下错误在遇到相同错误时可同样解决:当我们遇到相同报错如 imsave,imread,imwrite等属性或者关于其他包的其他属性找不到时,我们可以分析一下产生错误的原因是什么?首先我们看一下其他帖子的解决方式:我的方式:我们可以看到没有我们所需要的属性所以我们换一种实现方法:(不知道还有什么实现方法可以晚上搜,相信大家都会吧!)使用imageio模块代替scipy.misc 模块将两者属性输出,查看:我们会
2022-06-06 20:28:21 4380 4
原创 【matlab 图像处理】图像锐化
对人眼视觉系统的研究表明,人类对形状的感知一般通过识别边缘、轮廓、前景和背景而形成。在图像处理中,边缘信息也十分重要。边缘是图像中亮度突变的区域,通过计算局部图像区域的亮度差异,从而检测出不同目标或场景各部分之间的边界,是图像锐化,图像分割、区域形状特征提取等技术的重要基础。图像锐化(Image Sharpening)的目的是加强图像中景物的边缘和轮廓,突出图像中的细节或增强被模糊了的细节。对非肤色部分进行初步过滤将RGB颜色模型转化为YCgCr颜色模型,使用中值滤波对图像进行中值滤波ImageOrig
2022-06-06 09:37:08 10480
原创 【深度学习】卷积神经网络
续接上文+步幅以图像大小 6x6x3 卷积核大小 3x3x3 为例==如图:==使用不同的卷积核对图像进行卷积,得到两个不同的4x4特征矩阵;矩阵中每一个值+偏置b,然后应用非线性激活函数ReLu最终得到另一个4x4矩阵;然后将两个矩阵堆叠起来,最终得到一个4x4x2的矩阵;我们通过计算从6x6x3的输入推导出一个4x4x2的输出,它就是神经网络的一层(layer),它映射到标准神经网络中四个卷积层中的某一层或者一个非卷积神经网络中:在卷积过程中,我们对这27x2(两个卷积核)个数进行操作,取这些数做乘
2022-05-15 11:58:18 655
原创 【matlab 图像处理】双边滤波&高斯滤波
在图像的获取、传输和存储过程中常常会受到各种噪声的干扰和影响,使图像质量下降,为了获取高质量的数字图像,很有必要对图像进行消除噪声处理,并且尽可能地保持原始信息的完整性。通常把抑制或消除图像中存在的噪声而改善图像质量的过程称为图像的平滑(ImageSmoothing)。图像平滑方法大致分为两大类:空域法和频域法。空域法主要借助模板运算,在像素点邻域内,利用噪声像素点特性进行滤波;频域法是指对图像进行正交变换,利用噪声对应高频信息的特点进行滤波。高斯滤波的基本原理是以某一像素为中心,在它的周围选择一个局部邻域
2022-05-13 08:52:50 5196
原创 【matlab 图像处理】离散傅里叶变换&离散余弦变换&K-L变换&小波变换
【matlab 图像处理】离散傅里叶变换&离散余弦变换&K-L变换&小波变换正交变换是信号处理的一种有效工具。图像信号不仅可以在空间域表示,也可以在频域表示,后者将有利于许多问题的分析及讨论。对图像进行正交变换,在图像增强、图像复原、图像特征提取、图像编码等处理中都经常采用。常用的正交变换有多种,主要有离散傅里叶变换、离散余弦变换、K-L变换,Radon变换和离散小波变换等。离散傅里叶变换离散傅里叶变换(Discrete Fourier Transform,DFT)是直接处理离
2022-05-05 09:22:05 10676 2
原创 【深度学习】卷积神经网络
续接上文 卷积运算&边缘检测卷积中的步幅是构建卷积神经网络的基本操作例如:我们将步幅(stride=2)设置为2,7x7的矩阵与右边的filter进行卷积运算;与之前的卷积运算不同的是我们之前步幅为1时,移动filter向右一格,而此时步幅为2时则移动两格;而当我们向下移动时,也是移动两格而非一格如此经过卷积运算,我们最终得到一个3x3的输出矩阵7x7 * 3x3 = 3x3;由此可总结出一个输入输出的公式(padding = p,stride = s = 2):nxn * fxf = (n+2p-f)/
2022-04-30 23:54:29 1329 3
原创 【matlab 图像处理】邻域处理与模板运算
图像合成邻域处理与模板运算邻点及邻域图像是由像素构成的。图像中相邻的像素构成邻域,邻域中的像素点互为邻点。以某个像素点(z,2)为中心,处于其上、下、左、右4个方向上的像素点称为它的4 邻点,再加上左上、右上、左下、右下4个方向的点就称为它的8邻点。像素的4 邻点和8 邻点由于与像素直接邻接,因此在邻域处理中较为常用。像素邻点的集合构成了一个像素的邻域。有时,在图像处理中也将中心像素和它的特定邻点合称为邻域。邻域的位置由中心像素决定,大小一般用边长表示。如图给出了包含中心像素在内的3×3邻域和5×5
2022-04-28 20:38:13 6017 4
原创 【matlab 图像处理】 肤色检测
肤色检测肤色是人类皮肤重要特征之一,在检测人脸或手等目标时常采用肤色检测的方法,将相关区域从图像中分割出来。肤色检测方法:肤色检测方法有很多,但无论是基于不同的色彩空间还是不同的肤色模型,其根本出发点在于肤色分布的聚集性,即肤色的颜色分量一般聚集在某个范围内。通过大量的肤色样本进行统计,找出肤色颜色分量的聚集范围或用特殊的分布模型去模拟肤色分布,进而实现对任意像素颜色的判别。本例主要采用肤色颜色分量分布范围的方法,简要介绍肤色模型的概念。不同彩色空间肤色分布范围肤色模型肤色模型是根据大量样本
2022-04-21 22:35:43 8023 2
原创 【深度学习】卷积神经网络
卷积边缘检测 + Padding水平边缘检测与垂直边缘检测相似,只需改变filter矩阵为:然后与图像矩阵进行卷积运算即可得到水平边缘检测;与垂直同理此处不做过多赘述对角线边缘检测在如下左上右下较亮其他地方较暗的图像矩阵 与 水平边缘检测filter 作卷积运算 得到具有边缘特征的图像矩阵因为此处做举例图像矩阵6x6,过渡带不是很清晰明了;但如果使1000x1000这样的棋盘风格大图,就不会出现这些亮度为10的过渡带,因为图片尺寸很大所以中间值会变得非常小,更加明显因此使用不同的filte
2022-04-17 10:50:36 2642 2
原创 【matlab 图像处理】 guide 图像去雾系统
matlab guide 快速入门matlab GUI为用户图形化界面,可以使用guide命令进入图形化编辑界面回车弹出GUIDE 快速入门,可以选择所需要的模板进行编辑,默认为Blank GUI新建 GUI : 创建一个新的模板进行图形化编辑 最下面可勾选可选择编辑存储位置打开现有 GUI : 编辑已有GUI图形界面 点击可进行选择想要编辑的图形文件点击确定 进入图像化编辑界面 可在此界面进行编辑创作最常用到的是按钮和坐标区域(按钮用作函数的绑定等等;坐标区域用作展示图像等等)
2022-04-14 19:52:11 2918
原创 【深度学习】卷积神经网络
卷积运算卷积运算是卷积神经网络的基本组成部分以图像识别为例:神经网络的前几层检测边缘,在后面一些层可能检测到物体的部分,更靠后层可能检测到完整的物体例如:下面这张图片让计算机知道图中有什么物体,我们一般可能会检测图像中的垂直边缘,也就是图像中垂直的一些物体,比如栏杆,人的轮廓;我们可能也会检测水平边缘比如栏杆水平方向的轮廓如何在图像中检测这些边缘?例:这是一个6x6的灰度图像,所以他是6x6x1的矩阵,而不是6x6x3;因为灰度图像并没有RGB三通道为了检测图像中的垂直边缘,在卷积神
2022-04-12 20:17:03 1731 1
原创 【机器学习】感知机模型对偶形式
感知机模型的对偶形式点击链接可了解简单感知机模型推导过程及其实现python代码[https://blog.csdn.net/weixin_52762273/article/details/124027702]感知机模型的对偶形式也称累积形式,相对于之前的感知机多了一个 ɑi = nɧ ,n表示使用某实例作为误分类点更新参数w,b的次数,如果未被选择为误分类点去更新参数则n=0,ɧ :步长(由最开始给定,表示更新参数的快慢);w<——w+ɧ∗yi∗xiw <—— w + ɧ*yi*xi
2022-04-10 10:45:47 1981 2
原创 【机器学习】感知机模型 python感知机实现代码
感知机模型感知机是一种判别模型,使用于二分类问题,输入为实例的特征向量,输出实例的类别;取-1和+1分被称为负类和正类。。感知机学习主要是求出将训练数据能够进行线性划分的分离超平面,所以就有了基于误分类的损失函数,利用梯度下降法对损失函 数进行极小化,求得感知机模型 感知机学习算法具有简单而易于实现的优点,分为 原始形式和对偶形式 。首先我们来看看感知机模型模型:由输入空间到输出空间的如下函数:f(x)=sign(w•x+b)f(x) = sign (w•x + b)f(x)=sign(w•x+
2022-04-07 21:59:52 3578 3
原创 【matlab 图像处理】matlab 图像去雾增强
matlab 图像去雾基于非物理模型的去雾方法:不考虑雾导致图像退化的原因,只通过实现对比度增强方法达到去雾目的;例如,子块部分重叠的局部直 方图均衡化方法、对比度受限自适应直方图均衡化方法、Retinex增强方法等。基于物理模型的去雾方法:考虑雾导致图像退化的成因,进行数学建模,补偿退化过程造成的失真,恢复无雾图像。该类方法获得的无雾 图像,视觉效果自然,一般无信息损失。去雾方法局部直方图均衡化clc; clear;close al
2022-04-04 23:31:56 10944 11
原创 【matlab 图像处理】matlab 图像处理常用函数
matlab 图像处理常用函数常用函数有:imread,imshow,imwrite,rgb2gray,imresize,imhist,histeq等imread 读图像读取图像的简单函数I = imread('sweden_input.jpg'); % 读取图像% 还可以与其他函数嵌套使用 表示直接读取并使用函数处理图形Image = im2double(imread('AG.jpg')); % 将数字图像精度转换至双精度imshow 展示图像展示各种图像% 程序第一张图像显示时
2022-04-02 23:58:29 3048
原创 【Linux 多文件编译】gcc_makefile
Linux makefile掌握GCC多文件编程方法,掌握Makefile基本语法。1、在$HOME目录下以自己的学号建立文件夹;使用mkdir filename 命令创建文件cd filename/ 进入所创文件夹目录下接下来便可以使用vi 编辑器编辑程序了2、在该文件夹下利用VI编辑器和GCC编译器完成C语言多文件(大于等于两个文件)编译;程序编写完毕后到产生结果四步骤:(1) 预处理(2) 编译(3) 汇编(4) 链接前三个步骤统称为编译c1.c–&g
2022-04-01 18:59:16 1167 1
原创 Installation did not succeed. The application could not be installed.
在运行module时报错:(No storage with enough free space;res=-1)安装不成功,没有空闲内存问题原因:avd 模拟手机 内存不足解决方法:在avd中删除一些无用的数据或之前测试的module 已安装的卸载掉...
2022-03-31 13:45:24 1259
原创 【matlab 图像处理】 窗切片处理&分段线性变换&直方图均衡化&直方图统计
图像处理1.窗切片处理应用:对医学数字图像进行切片处理,使所需要观察的部位更加凸显原始图像:第一种切片方式:第二种切片方式:clear;close all;Image = im2double(imread('AG.jpg')); % 将数字图像精度转换至双精度[h, w] = size(Image); % 获取图像大小 即图像的高h,宽wimshow(Image);title('ACG图像'); % 展示原始图像NewImagel=ze
2022-03-29 15:45:25 8920
原创 【matlab 图像处理】通道互换&推向颜色模式转换&图像灰度化
1.蓝绿通道互换p1 = imread('test1.jpg'); % 读取图像文件p2 = p1; % 相当于将图像复制赋值给p2p2(:,:,2)=p1(:,:,3); % 将p1蓝色通道赋值给p2绿色通道 1:red ; 2:green ; 3:bluep2(:,:,3)=p1(:,:,2); % 将p1绿色通道赋值给p2蓝色通道subplot(121),imshow(p1),title('p1'); % 显示原图 subp
2022-03-28 19:29:04 9066
原创 【python】 正则表达式
一.python 正则表达式1.元字符# 行定位符"^"表示行的开始,"$"表示行的结尾 ^tm tm$ tm表示出现在任意部分# 元字符 ^ $ \bmr\w*\b 匹配以字母mr开头的单词,先是从某个单词单词开始处(\b),然后匹配字母mr,接着是任意数量的字母或数字(\w*),最后是单词结束处(\b)# 该正则表达式可以匹配“mrsoft”"mrbook""mr123456"代码说明.匹配换行字符以外的的任意字符\w匹配字母或数字或下划线或汉字\
2022-03-28 15:06:07 1803
学生管理/学生选课/教务管理平台
2021-12-16
glassfish启动失败 显示找不到或无法加载主类 Files
2021-09-16
TA创建的收藏夹 TA关注的收藏夹
TA关注的人