513.找树左下角的值
给定一个二叉树的 根节点 root
,请找出该二叉树的 最底层 最左边 节点的值。
假设二叉树中至少有一个节点。
示例 1:
输入: root = [2,1,3]
输出: 1
示例 2:
输入: [1,2,3,4,null,5,6,null,null,7]
输出: 7
问题分析:
递归法:找到最底层的左叶子,递归和回溯,左遍历必须在前,无论多深,左先遍历,一定最先找到左节点的值。 中的处理逻辑为空,所以前中后遍历都可以,因为左遍历一直在右遍历前。
其实用迭代法更简单,但我就不,有空更新
class Solution {
int maxdep=Integer.MIN_VALUE;
int result;//存放最后的结果
public int findBottomLeftValue(TreeNode root) {
result=root.val;//千万不能忘
traversal(root,maxdep);
return result;
}
public void traversal(TreeNode node,int depth){
if (node.left==null&&node.right==null) {//终止条件
if (depth>maxdep){
maxdep=depth;
result=node.val;
}
}
//单层逻辑
if (node.left!=null){//左
depth++;
traversal(node.left,depth);//递归
depth--;//回溯,让深度复原
}
if (node.right!=null){//左
depth++;
traversal(node.right,depth);
depth--;//回溯,让深度复原
}
}
}
112. 路径总和
给你二叉树的根节点 root
和一个表示目标和的整数 targetSum
。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum
。如果存在,返回 true
;否则,返回 false
。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。
问题描述:
中节点无处理逻辑,所以前中后遍历顺序都可以。
1、确定递归函数的参数和返回类型 参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。 ,计数器初始值为targetSum,每走到一个节点,计数器就减去节点的值
再来看返回值,总结如下三点:
- 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。 (113.路径总和ii)
- 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (236.二叉树的最近公共祖先)
- 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。 (本题)
2、确定终止条件 如果为叶子节点,且计数器为0,就return true 如果是叶子节点,计数器不为零,就return false
3、确定单层递归的逻辑 因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。 递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。 如果路径有误,则要回溯。
class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {
if (root==null) return false;
targetSum=targetSum-root.val;
return traversal(root,targetSum);
}
public boolean traversal(TreeNode root,int targetSum){
if (root.left==null&&root.right==null&&targetSum==0) return true;
if (root.left==null&&root.right==null&&targetSum!=0) return false;
if (root.left!=null){//左
targetSum=targetSum-root.left.val;
if (traversal(root.left,targetSum)){//告知上层递归结果,及时返回
return true;
}
targetSum=targetSum+root.left.val;//回溯
}
if (root.right!=null){//右
targetSum=targetSum-root.right.val;
if (traversal(root.right,targetSum)){//告知上层递归结果
return true;
}
targetSum=targetSum+root.right.val;//回溯
}
return false;//若一直没返回true,最后返回flase
}
}
113.路径总和ii
给你二叉树的根节点 root
和一个整数目标和 targetSum
,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:[[5,4,11,2],[5,8,4,5]]
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:[]
示例 3:
输入:root = [1,2], targetSum = 0
输出:[]
问题描述:
找到所有路径,所以递归函数不要返回值,思路如上题
class Solution {
public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
List<Integer> paths=new ArrayList<>();
List<List<Integer>> result=new ArrayList<List<Integer>>();
if (root==null) return result;
traversal(root,targetSum,paths,result);
return result;
}
public void traversal(TreeNode node,int count,List<Integer> paths,List<List<Integer>> result){
paths.add(node.val);
if (node.left==null&&node.right==null) {
if (count-node.val==0){
result.add(new ArrayList<>(paths));
}
}
if (node.left!=null){
traversal(node.left,count-node.val,paths,result);
paths.remove(paths.size()-1);//回溯
}
if (node.right!=null){
traversal(node.right,count-node.val,paths,result);
paths.remove(paths.size()-1);//回溯
}
}
}
106.从中序与后序遍历序列构造二叉树
给定两个整数数组 inorder
和 postorder
,其中 inorder
是二叉树的中序遍历, postorder
是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。
示例 1:
输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
输出:[3,9,20,null,null,15,7]
示例 2:
输入:inorder = [-1], postorder = [-1]
输出:[-1]
问题描述:
第一步:如果数组大小为零的话,说明是空节点了。
第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点
第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
第五步:切割后序数组,切成后序左数组和后序右数组
第六步:递归处理左区间和右区间
class Solution {
public TreeNode buildTree(int[] inorder, int[] postorder) {
if (inorder.length==0||postorder.length==0) return null;
return findNode(inorder,0,inorder.length,postorder,0,postorder.length);//左闭右开
}
public TreeNode findNode(int[] inorder,int inBegin,int inEnd,int[] postorder,int postBegin,int postEnd){
// if (postEnd==postBegin) return null;
if (inBegin==inEnd) return null;//不能写成if (postBegin==inEnd)
int rootValue=postorder[postEnd-1];//取后序遍历最后一个元素为节点元素
TreeNode root=new TreeNode(rootValue);//构建新二叉树
if (postEnd-postBegin==1) return root;//如果后序遍历只有一个节点,那就是根节点
int index;
for (index=inBegin;index<inEnd;index++){//寻找中序数组位置,做切割点
if (inorder[index]==rootValue) break;
}
//切中序数组
//左中序,左闭右开[leftInorderBegin,leftInorderEnd)
int leftInorderBegin=inBegin;
int leftInorderEnd=index;
//右中序,左闭右开[rightInorderBegin,rightInorderEnd)
int rightInorderBegin=index+1;
int rightInorderEnd=inEnd;//inEnd已赋值inorder.length
//切后序数组
//左后序,左闭右开
int leftPostorderBegin=postBegin;
int leftpostorderEnd=postBegin+(index-inBegin);//通过中序遍历可知左子树右区间
//右后序,左闭右开
int rightPostorderBegin=postBegin+(index-inBegin);
int rightPostorderEnd=postEnd-1;//postEnd已赋值postorder.length,且在最后的根节点排除,右开
root.left=findNode(inorder,leftInorderBegin,leftInorderEnd,postorder,leftPostorderBegin,leftpostorderEnd);
root.right=findNode(inorder,rightInorderBegin,rightInorderEnd,postorder,rightPostorderBegin,rightPostorderEnd);
return root;
}
}
这题ex吐了,卡了一晚上
105.从前序与中序遍历序列构造二叉树
给你二叉树的根节点 root
和一个表示目标和的整数 targetSum
。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum
。如果存在,返回 true
;否则,返回 false
。叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径: (1 --> 2): 和为 3 (1 --> 3): 和为 4 不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。
问题分析:
第一步:如果数组大小为零的话,说明是空节点了。
第二步:如果不为空,那么取前序数组第一个元素作为节点元素。
第三步:找到前序数组第一个元素在中序数组的位置,作为切割点
第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
第五步:切割前序数组,切成前序左数组和前序右数组
第六步:递归处理左区间和右区间
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
if (preorder.length==0) return null;//可有可无
return traversal(preorder,0, preorder.length, inorder,0,inorder.length);
}
public TreeNode traversal(int[] preorder,int preBegin,int preEnd,int[] inorder,int inBegin,int inEnd){
if (preBegin==preEnd) return null;
//第二步
int rootVal=preorder[preBegin];
//第三步
int index;
for (index=inBegin;index<inEnd;index++){
if (inorder[index]==rootVal) break;//index记住此时位置
}
TreeNode root=new TreeNode(rootVal);
//第四步 切中序数组
int leftinOrderBegin=inBegin;
int leftinOrderEnd=index;
int rightinOrderBegin=index+1;
int rightinOrderEnd=inEnd;
//第五步 切前序数组
int leftpreOrderBegin=preBegin+1;
int leftpreOrderEnd=preBegin+1+(index-inBegin);
int rightpreOrderBegin=preBegin+1+(index-inBegin);
int rightpreOrderEnd=preEnd;
//第六步
root.left=traversal(preorder,leftpreOrderBegin,leftpreOrderEnd,inorder,leftinOrderBegin,leftinOrderEnd);
root.right=traversal(preorder,rightpreOrderBegin,rightpreOrderEnd,inorder,rightinOrderBegin,rightinOrderEnd);
return root;
}
}