day15|513.找树左下角的值、112. 路径总和、113.路径总和ii、106.从中序与后序遍历序列构造二叉树、105.从前序与中序遍历序列构造二叉树

513.找树左下角的值

        给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。

假设二叉树中至少有一个节点。

示例 1:

 

输入: root = [2,1,3]

输出:

示例 2:

输入: [1,2,3,4,null,5,6,null,null,7]

输出: 7

问题分析:

递归法:找到最底层的左叶子,递归和回溯,左遍历必须在前,无论多深,左先遍历,一定最先找到左节点的值。 中的处理逻辑为空,所以前中后遍历都可以,因为左遍历一直在右遍历前。

其实用迭代法更简单,但我就不,有空更新

class Solution {
    int maxdep=Integer.MIN_VALUE;
    int result;//存放最后的结果
    public int findBottomLeftValue(TreeNode root) {
        result=root.val;//千万不能忘
        traversal(root,maxdep);
        return result;
    }
    public void traversal(TreeNode node,int depth){
        if (node.left==null&&node.right==null) {//终止条件
            if (depth>maxdep){
                maxdep=depth;
                result=node.val;
            }
        }
        
        //单层逻辑
        if (node.left!=null){//左
            depth++;
            traversal(node.left,depth);//递归
            depth--;//回溯,让深度复原
        }
        if (node.right!=null){//左
            depth++;
            traversal(node.right,depth);
            depth--;//回溯,让深度复原
        }
    }
}

112. 路径总和

        给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。

叶子节点 是指没有子节点的节点。

示例 1:

 

输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22

输出:true

解释:等于目标和的根节点到叶节点路径如上图所示。

示例 2:

 

输入:root = [1,2,3], targetSum = 5

输出:false

解释:树中存在两条根节点到叶子节点的路径:

(1 --> 2): 和为 3

(1 --> 3): 和为 4

不存在 sum = 5 的根节点到叶子节点的路径。 

示例 3:

输入:root = [], targetSum = 0

输出:false

解释:由于树是空的,所以不存在根节点到叶子节点的路径。 

问题描述:

中节点无处理逻辑,所以前中后遍历顺序都可以。

1、确定递归函数的参数和返回类型 参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。 ,计数器初始值为targetSum,每走到一个节点,计数器就减去节点的值

再来看返回值,总结如下三点:

  • 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。 (113.路径总和ii) 
  • 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (236.二叉树的最近公共祖先) 
  • 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。 (本题)

2、确定终止条件 如果为叶子节点,且计数器为0,就return true 如果是叶子节点,计数器不为零,就return false

3、确定单层递归的逻辑 因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。 递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。 如果路径有误,则要回溯。

class Solution {
    public boolean hasPathSum(TreeNode root, int targetSum) {
       if (root==null) return false;
        targetSum=targetSum-root.val;
       return traversal(root,targetSum);


    }

    public boolean traversal(TreeNode root,int targetSum){
        if (root.left==null&&root.right==null&&targetSum==0) return true;
        if (root.left==null&&root.right==null&&targetSum!=0) return false;

        if (root.left!=null){//左
            targetSum=targetSum-root.left.val;
            if (traversal(root.left,targetSum)){//告知上层递归结果,及时返回
                return true;
            }
            targetSum=targetSum+root.left.val;//回溯
        }

        if (root.right!=null){//右
            targetSum=targetSum-root.right.val;
            if (traversal(root.right,targetSum)){//告知上层递归结果
                return true;
            }
            targetSum=targetSum+root.right.val;//回溯
        }

        return false;//若一直没返回true,最后返回flase
    }
}


 113.路径总和ii

        给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。叶子节点 是指没有子节点的节点。

示例 1:

输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22

输出:[[5,4,11,2],[5,8,4,5]] 

示例 2:

输入:root = [1,2,3], targetSum = 5

输出:[]   

示例 3:

输入:root = [1,2], targetSum = 0

输出:[]

问题描述:

找到所有路径,所以递归函数不要返回值,思路如上题

class Solution {

    public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
        List<Integer> paths=new ArrayList<>();
        List<List<Integer>> result=new ArrayList<List<Integer>>();
        if (root==null) return result;
        traversal(root,targetSum,paths,result);
        return result;


    }
    public void traversal(TreeNode node,int count,List<Integer> paths,List<List<Integer>> result){
        paths.add(node.val);
        if (node.left==null&&node.right==null) {
           if (count-node.val==0){
               result.add(new ArrayList<>(paths));
           }
        }

        if (node.left!=null){
            traversal(node.left,count-node.val,paths,result);
            paths.remove(paths.size()-1);//回溯
        }
        if (node.right!=null){
            traversal(node.right,count-node.val,paths,result);
            paths.remove(paths.size()-1);//回溯
        }

    }
}

106.从中序与后序遍历序列构造二叉树

    给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 

示例 1:

输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]

输出:[3,9,20,null,null,15,7] 

示例 2:

输入:inorder = [-1], postorder = [-1]

输出:[-1] 

问题描述:

第一步:如果数组大小为零的话,说明是空节点了。

第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

第五步:切割后序数组,切成后序左数组和后序右数组

第六步:递归处理左区间和右区间

class Solution {
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        if (inorder.length==0||postorder.length==0) return null;
        return findNode(inorder,0,inorder.length,postorder,0,postorder.length);//左闭右开
    }
    public TreeNode findNode(int[] inorder,int inBegin,int inEnd,int[] postorder,int postBegin,int postEnd){
       // if (postEnd==postBegin) return null;
        if (inBegin==inEnd) return null;//不能写成if (postBegin==inEnd)
        int rootValue=postorder[postEnd-1];//取后序遍历最后一个元素为节点元素

        TreeNode root=new TreeNode(rootValue);//构建新二叉树
        if (postEnd-postBegin==1) return root;//如果后序遍历只有一个节点,那就是根节点
        int index;
        for (index=inBegin;index<inEnd;index++){//寻找中序数组位置,做切割点
            if (inorder[index]==rootValue) break;
        }
        //切中序数组
        //左中序,左闭右开[leftInorderBegin,leftInorderEnd)
        int leftInorderBegin=inBegin;
        int leftInorderEnd=index;
        //右中序,左闭右开[rightInorderBegin,rightInorderEnd)
        int rightInorderBegin=index+1;
        int rightInorderEnd=inEnd;//inEnd已赋值inorder.length
        //切后序数组
        //左后序,左闭右开
        int leftPostorderBegin=postBegin;
        int leftpostorderEnd=postBegin+(index-inBegin);//通过中序遍历可知左子树右区间
        //右后序,左闭右开
        int rightPostorderBegin=postBegin+(index-inBegin);
        int rightPostorderEnd=postEnd-1;//postEnd已赋值postorder.length,且在最后的根节点排除,右开

        root.left=findNode(inorder,leftInorderBegin,leftInorderEnd,postorder,leftPostorderBegin,leftpostorderEnd);
        root.right=findNode(inorder,rightInorderBegin,rightInorderEnd,postorder,rightPostorderBegin,rightPostorderEnd);
        return root;
    }
}

这题ex吐了,卡了一晚上


105.从前序与中序遍历序列构造二叉树

        给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。叶子节点 是指没有子节点的节点。

示例 1:

输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22

输出:true

解释:等于目标和的根节点到叶节点路径如上图所示。 

示例 2:

输入:root = [1,2,3], targetSum = 5

输出:false

解释:树中存在两条根节点到叶子节点的路径: (1 --> 2): 和为 3 (1 --> 3): 和为 4 不存在 sum = 5 的根节点到叶子节点的路径。

示例 3:

输入:root = [], targetSum = 0

输出:false

解释:由于树是空的,所以不存在根节点到叶子节点的路径。 

 问题分析:

第一步:如果数组大小为零的话,说明是空节点了。

第二步:如果不为空,那么取前序数组第一个元素作为节点元素。

第三步:找到前序数组第一个元素在中序数组的位置,作为切割点

第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

第五步:切割前序数组,切成前序左数组和前序右数组

第六步:递归处理左区间和右区间

class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if (preorder.length==0) return null;//可有可无
        return  traversal(preorder,0, preorder.length, inorder,0,inorder.length);

    }
    public TreeNode traversal(int[] preorder,int preBegin,int preEnd,int[] inorder,int inBegin,int inEnd){
        if (preBegin==preEnd) return null;

        //第二步
        int rootVal=preorder[preBegin];
        //第三步
        int index;
        for (index=inBegin;index<inEnd;index++){
            if (inorder[index]==rootVal)  break;//index记住此时位置
        }
        TreeNode root=new TreeNode(rootVal);
        //第四步 切中序数组
        int leftinOrderBegin=inBegin;
        int leftinOrderEnd=index;

        int rightinOrderBegin=index+1;
        int rightinOrderEnd=inEnd;

        //第五步 切前序数组
        int leftpreOrderBegin=preBegin+1;
        int leftpreOrderEnd=preBegin+1+(index-inBegin);

        int rightpreOrderBegin=preBegin+1+(index-inBegin);
        int rightpreOrderEnd=preEnd;

        //第六步
        root.left=traversal(preorder,leftpreOrderBegin,leftpreOrderEnd,inorder,leftinOrderBegin,leftinOrderEnd);
        root.right=traversal(preorder,rightpreOrderBegin,rightpreOrderEnd,inorder,rightinOrderBegin,rightinOrderEnd);

        return root;

    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值