day38|70. 爬楼梯(进阶)、322. 零钱兑换、279.完全平方数

文章探讨了使用动态规划解决三类问题的方法:1)爬楼梯,通过递推公式dp[j]=dp[j]+dp[j-i]找到爬到指定楼梯阶数的不同方式;2)零钱兑换,通过dp[j]=min(dp[j],dp[j-coins[i]]+1)找出最少硬币组合;3)完全平方数,用dp[j]=min(dp[j],dp[j-i*i]+1)计算和为n的最少完全平方数个数。每题都涉及dp数组初始化、遍历顺序和递推公式的应用。
摘要由CSDN通过智能技术生成

70. 爬楼梯(进阶)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2

输出:2

解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶

示例 2:

输入:n = 3

输出:3

解释:有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶

问题分析:

1、确定dp数组以及下标的含义

dp[j]:爬到 j 阶有多少种方法

2、确定递推公式

完全背包,重复利用物品,且为排列数

楼顶为背包,每次爬的阶数为物品

所以递推公式为:

dp[j]=dp[j]+dp[j-i]

3、dp数组初始化

初始化dp[0]=1

4、确定遍历顺序

本题要求是排列数,{2,1}和{1,2}是两种方法,所以先遍历背包。列排序中,阶数1和阶数2都在同层出现,所以会出现{1,2}和{2,1},为排列数

5、打印dp数组

class Solution {
    public int climbStairs(int n) {
        int[] dp=new int[n+1];
        dp[0]=1;
        for (int j=0;j<=n;j++){
            for (int i=1;i<=2;i++){
                if (j>=i) {
                    dp[j] = dp[j] + dp[j - i];
                }
            }
        }
        return dp[n];
    }
}

322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3

输出:-1

示例 3:

输入:coins = [1], amount = 0

输出:0

问题分析:

 1、确定dp数组以及下标的含义

dp[j]:装满 j 的最少物品是dp[j]

2、确定递推公式

金额为背包,硬币为物品

选出最少的物品数,用min方法,比较上一个物品的dp[j]和需要凑齐本次的物品数+1

所以递推公式为:

dp[j]=Math.min(dp[j],dp[j-coins[i]]+1)

3、dp数组初始化

初始化dp[0]=0,非0初始化为Integer.MAX_VALUE,因为递推公式为选出最小值,防止被覆盖应该先初始化一个最大值。

4、确定遍历顺序

本题为组合数,先遍历物品,再遍历背包

5、打印dp数组

class Solution {
    public int coinChange(int[] coins, int amount) {
        int[] dp=new int[amount+1];
        for (int j=0;j<=amount;j++){
            dp[j]=Integer.MAX_VALUE;
        }
        dp[0]=0;

        for (int i=0;i<coins.length;i++){
            for (int j=coins[i];j<=amount;j++){
                if (dp[j-coins[i]]!=Integer.MAX_VALUE) {//避免出现面额凑不齐总金额的情况
                                                        // 需要凑齐的前一步也无法凑齐
                                                        //导致这一步也无法凑齐
                                                        // 例如[2] 3
                    dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
                }
            }
        }
      /*  for (int i=0;i<coins.length;i++){
            for (int j=0;j<=amount;j++){
                System.out.print(dp[j]+" ");
            }
            System.out.println("\n");
        }*/
        if (dp[amount]==Integer.MAX_VALUE) return -1;
        return dp[amount];
    }
}

279.完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12

输出:3

解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13

输出:2

解释:13 = 4 + 9

问题分析:

 1、确定dp数组以及下标的含义

dp[j]:组成和为n的最少的平方和数有dp[j]个

2、确定递推公式

和为背包,数字为物品

每个物品都是平方和数,即为i*i

选出最少的物品数,用min方法,比较上一个物品的dp[j]和需要凑齐本次的物品数+1

所以递推公式为:

dp[j]=Math.min(dp[j],dp[j-i*i]+1)

3、dp数组初始化

初始化dp[0]=0,非0初始化为Integer.MAX_VALUE,因为递推公式为选出最小值,防止被覆盖应该先初始化一个最大值。

4、确定遍历顺序

本题为组合数,先遍历物品,再遍历背包

5、打印dp数组

class Solution {
    public int numSquares(int n) {
        int[] dp=new int[n+1];
        for (int j=0;j<=n;j++){
            dp[j]=Integer.MAX_VALUE;
        }
        dp[0]=0;
        for (int i=1;i*i<=n;i++){
            for (int j=i*i;j<=n;j++){
                dp[j]=Math.min(dp[j],dp[j-i*i]+1);
            }
        }
        /*for (int i=1;i*i<=n;i++){
            for (int j=1;j<=n;j++){
                System.out.print(dp[j]+" ");
            }
            System.out.println("\n");
        }*/
        return dp[n];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值