力扣(串联所有单词的子串)

串联所有单词的子串问题:多滑动窗口与哈希表的实战应用。

一、题目分析

在这里插入图片描述

(一)问题定义

给定字符串 s 和字符串数组 wordswords 中所有单词长度相同 ),找出 s 中所有“串联子串”的起始索引。串联子串指包含 words 中所有单词(任意顺序连接)的子串。例如 words = ["ab","cd","ef"] 时,"abcdef""abefcd" 等符合要求,而顺序混乱或缺失单词的子串则不符合。

(二)核心挑战

  1. 精确匹配:需确保子串包含 words 中所有单词,且数量一致,顺序不限。
  2. 高效遍历s 可能较长,words 单词数量和长度各异,需避免暴力枚举所有可能子串(时间复杂度过高 )。
  3. 时间复杂度控制:题目要求高效算法,需利用哈希表和滑动窗口思想,将时间复杂度优化到可接受范围。

二、算法思想:多滑动窗口 + 哈希表协同

(一)哈希表的作用

  • 词频统计:用哈希表 wordMap 统计 words 中各单词的出现次数,作为匹配依据。
  • 窗口词频对比:在滑动窗口过程中,维护当前窗口内的单词词频哈希表(windows 数组中的每个 Map ),与 wordMap 对比,判断窗口是否为串联子串。

(二)多滑动窗口的设计

由于 words 中单词长度固定(设为 wordLen ),子串需由连续的单词拼接而成。因此,以 wordLen 为间隔,设计 wordLen 个滑动窗口(对应不同起始偏移 )。例如 wordLen = 3 时,窗口起始偏移为 0、1、2 ,分别处理不同起始位置的子串,确保覆盖所有可能的串联子串。

(三)滑动窗口的移动策略

  1. 初始化窗口:对每个起始偏移 i0 <= i < wordLen ),初始化一个窗口,截取 s 中对应位置的所有单词(按 wordLen 分割 ),统计词频存入 windows[i]
  2. 动态移动窗口:窗口初始化后,以 wordLen 为步长向右滑动。每次滑动时,移除窗口左侧的旧单词,加入右侧的新单词,更新 windows[winIndex] 的词频,再与 wordMap 对比,判断是否为串联子串。

三、代码实现与详细注释

class Solution {
    public List<Integer> findSubstring(String s, String[] words) {
        int wordCount = words.length;
        int wordLen = words[0].length();
        int sLen = s.length();
        List<Integer> res = new ArrayList<>();
        //如果words的长度大于s的长度,则不可能有子串
        if (sLen < wordCount * wordLen || s == null || sLen == 0 || words == null || wordCount == 0) {
            return res;
        }
        //将word置入wordMap,用于比对和计数
        Map<String, Integer> wordMap = new HashMap<>();
        for (String word : words) {
            //如果word存在就在原有的数量上+1不存在为0+1;
            wordMap.put(word, 1 + wordMap.getOrDefault(word, 0));
        }
        //采用多滑动窗口的方式,一个下标表示一个滑动窗口
        Map<String, Integer>[] windows;
        windows = new HashMap[wordLen];
        //初始化多滑动窗口 i为windows中的每一个窗口下标
        //wordCount*wordLen是滑动窗口的大小
        //i+wordCount*wordLen确保当前起始位置 i 之后,存在足够长度的子串
        for (int i = 0; i < wordLen && i + wordCount * wordLen <= sLen; i++) {
            // 在外层循环中初始化每个窗口的Map
            windows[i] = new HashMap<>();
            //提取对应滑动窗口内的所有单词
            /*j=i,例:i=0即该滑动窗口是0偏移量的单词
                    i=1即该滑动窗口是1偏移量的单词
            */
            //退出条件:j要保持在对应滑动窗口的大小中
            //j+=wordLen: 每次递增一个单词的长度 
            for (int j = i; j < i + wordCount * wordLen; j += wordLen) {
                String subStr = s.substring(j, j + wordLen); // j是当前单词的起始索引
                //对字符串进行截取,截取为一个单词一个单词
                windows[i].put(subStr, 1 + windows[i].getOrDefault(subStr, 0));
            }
            //判断每一个滑动窗口有没有窗口已经是子串
            if (windows[i].equals(wordMap)) {
                res.add(i);
            }
        }
        //移动窗口
        //i代表窗口的左边界
        //在上面已经对窗口进行初始化,起始位置从第一个窗口的下一个单词长度开始
        //i+wordCount*wordLen<=sLen:确保当前位置i之后有足够的长度容纳整个窗口
        for (int i = wordLen; i + wordCount * wordLen <= sLen; i++) {
            //滑动窗口的相对位置
            int winIndex = i % wordLen;
            // s.substring(i,wordLen+j)
            // 截取左侧单词(起始位置:i - wordLen,长度:wordLen)
            String pervWord = s.substring(i - wordLen, (i - wordLen) + wordLen);

            // 截取右侧新单词(起始位置:nextWordStart,长度:wordLen)
            int nextWordStart = i + (wordCount - 1) * wordLen;
            String nextWord = s.substring(nextWordStart, nextWordStart + wordLen);
            //删除左侧单词:如果在哈希表中值>1则这个word出现了1次以上,要在原值的基础上-1,而不是直接删除
            if(windows[winIndex].get(pervWord)>1)
            {
               windows[winIndex].put(pervWord,windows[winIndex].get(pervWord)-1);
            }
            else{
               windows[winIndex].remove(pervWord); 
            }
            //加入右侧单词
            windows[winIndex].put(nextWord, 1 + windows[winIndex].getOrDefault(nextWord, 0));
             //判断每一个滑动窗口有没有窗口已经是子串
             if (windows[winIndex].equals(wordMap)) {
                res.add(i);
            }
        }
        return res;
    }
}

(一)代码流程拆解

  1. 初始化与边界处理
    • 计算 wordCount(单词数量 )、wordLen(单词长度 )、sLens 长度 )。
    • s 长度不足容纳 words 所有单词拼接(sLen < wordCount * wordLen ),直接返回空结果。
  2. 构建 wordMap:统计 words 中各单词的词频,用于后续匹配。
  3. 多滑动窗口初始化
    • 针对每个起始偏移 i0 ~ wordLen-1 ),初始化窗口的词频表 windows[i]
    • 截取 s 中对应窗口的所有单词,统计词频。
    • 若窗口词频与 wordMap 匹配,记录起始索引 i
  4. 滑动窗口处理
    • i = wordLen 开始,继续滑动窗口。
    • 计算当前窗口的偏移索引 winIndexi % wordLen )。
    • 移除窗口左侧旧单词,更新词频;加入右侧新单词,更新词频。
    • 对比当前窗口词频与 wordMap ,匹配则记录起始索引 i

(二)关键逻辑解析

  • 多窗口设计:因单词长度固定,不同起始偏移(0 ~ wordLen-1 )的子串需独立处理。例如 wordLen=3 时,起始偏移 0、1、2 对应子串起始为 0、1、2 ,需分别用窗口覆盖。
  • 窗口词频更新:滑动时,通过“移除左侧旧单词、加入右侧新单词”的方式,避免重复截取子串(优化时间复杂度 )。利用哈希表的增删操作,高效维护窗口内的词频。
  • 匹配判断:每次窗口更新后,直接对比 windows[winIndex]wordMap ,利用哈希表的 equals 方法快速判断是否匹配。

三、复杂度分析

(一)时间复杂度

  • 初始化多窗口:共 wordLen 个窗口,每个窗口截取 wordCount 个单词(每个单词截取时间为 O(wordLen) ),总时间复杂度为 O(wordLen * wordCount * wordLen) = O(wordLen² * wordCount)
  • 滑动窗口处理:共 sLen - wordCount * wordLen 次滑动(近似 O(sLen) ),每次滑动涉及哈希表的增删查操作(均为 O(1) ,单词数量固定 ),总时间复杂度为 O(sLen)
  • 整体时间复杂度:O(wordLen² * wordCount + sLen) 。因 wordLenwordCount 通常远小于 sLen ,可近似认为是 O(sLen) ,满足题目高效要求。

(二)空间复杂度

  • 哈希表存储wordMap 存储 wordCount 个单词的词频,windows 数组存储 wordLen 个窗口的词频(每个窗口最多 wordCount 个单词 ),空间复杂度为 O(wordCount + wordLen * wordCount) = O(wordLen * wordCount)
  • 额外空间:结果列表 res 存储符合条件的起始索引,最多 O(sLen / wordLen) 个元素。整体空间复杂度为 O(wordLen * wordCount + sLen / wordLen) ,可接受。

串联所有单词的子串问题,通过多滑动窗口 + 哈希表的协同策略,巧妙解决了精确匹配与高效遍历的难题。多窗口覆盖不同起始偏移,确保不遗漏可能的子串;哈希表实现词频快速统计与对比,优化匹配效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值