题目描述
标题:奇怪的分式
上小学的时候,小明经常自己发明新算法。一次,老师出的题目是:
1/4 乘以 8/5
小明居然把分子拼接在一起,分母拼接在一起,答案是:18/45 (参见图1.png)
老师刚想批评他,转念一想,这个答案凑巧也对啊,真是见鬼!
对于分子、分母都是 1~9 中的一位数的情况,还有哪些算式可以这样计算呢?
请写出所有不同算式的个数(包括题中举例的)。
显然,交换分子分母后,例如:4/1 乘以 5/8 是满足要求的,这算做不同的算式。
但对于分子分母相同的情况,2/2 乘以 3/3 这样的类型太多了,不在计数之列!
注意:答案是个整数(考虑对称性,肯定是偶数)。请通过浏览器提交。不要书写多余的内容。
思路分析
枚举出所有结果然后一一判断
-`#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;
int main()
{
int i,j,n,m,x,y,x1,y1,z1,z2,m1,m2,c1,c,cnt=0;
for(i=1;i<=9;i++)
{
x=i;
for(j=1;j<=9;j++)
{
y=j;
for(m=1;m<=9;m++)
{
x1=m;
for(n=1;n<=9;n++)
{
y1=n;
z1=x1x;
m1=y1y;
c=__gcd(z1,m1);//用_gcd求最大公约数然后约分
z1=z1/c;
m1=m1/c;
z2=x10+x1;
m2=y10+y1;
c1=__gcd(z2,m2);
z2=z2/c1;
m2=m2/c1;
if(z1==z2 && m2==m1 && x!=y && x1!=y1)
{
//printf("x=%d y=%d x1=%d y1=%d z1=%d m1=%d z2=%d m2=%d\n",x,y,x1,y1,z1,m1,z2,m2);
cnt++;
}
}
}
}
}
printf("%d",cnt);
}`