二叉树(一)
一 、概念
一颗二叉树是结点的有序集合,该集合:
1.或者为空,
2.或者由一个根节点加上左子树和右子树组成。
由上图可以看出:
- 二叉树不存在度大于2的节点
- 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
可能出现的二叉树情况:
两种特殊的二叉树
- 满二叉树
一棵二叉树,每层的节点数都达到最大值,我们就叫这棵二叉树为满二叉树,满二叉树是一棵特殊的完全二叉树。 - 完全二叉树
一棵二叉树假设深度为k(即有k层),前k-1层的节点数都达到最大值,最后一层的节点从左至右依次排列,最后一个节点之前不能出现空节点(最后一层节点靠左对齐)
二、二叉树的性质
- 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有[ 2^(i-1)] (i>0)个结点
- 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是[2^k-1] (k>=0)
- 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
- 具有n个结点的完全二叉树的深度k为 log2(n+1)上取整
- 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
若2i+1<n,左孩子序号:2i+1,否则无左孩子
若2i+2<n,右孩子序号:2i+2,否则无右孩子
三、 二叉树的存储
- 顺序存储
- 类似于链表的链式存储