二叉树(一)

二叉树是一种有序节点集合,分为根节点、左子树和右子树。特殊类型包括满二叉树和完全二叉树。文章介绍了二叉树的性质,如层节点数量和深度关系,以及具有n个节点的完全二叉树的深度计算。此外,还讨论了二叉树的顺序和链式存储方式。
摘要由CSDN通过智能技术生成

二叉树(一)

一 、概念

一颗二叉树是结点的有序集合,该集合:

1.或者为空,
2.或者由一个根节点加上左子树和右子树组成。
二叉树
由上图可以看出:

  1. 二叉树不存在度大于2的节点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
    可能出现的二叉树情况:
    二叉树可能出现的情况

两种特殊的二叉树

  1. 满二叉树
    一棵二叉树,每层的节点数都达到最大值,我们就叫这棵二叉树为满二叉树,满二叉树是一棵特殊的完全二叉树。
  2. 完全二叉树
    一棵二叉树假设深度为k(即有k层),前k-1层的节点数都达到最大值,最后一层的节点从左至右依次排列,最后一个节点之前不能出现空节点(最后一层节点靠左对齐)
    满二叉树和完全二叉树示例图

二、二叉树的性质

  1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有[ 2^(i-1)] (i>0)个结点
  2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是[2^k-1] (k>=0)
  3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
  4. 具有n个结点的完全二叉树的深度k为 log2(n+1)上取整
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
    若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
    若2i+1<n,左孩子序号:2i+1,否则无左孩子
    若2i+2<n,右孩子序号:2i+2,否则无右孩子

三、 二叉树的存储

  1. 顺序存储
  2. 类似于链表的链式存储
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值