一、Fibonacci数列
1. 题目描述
Fibonacci数列是这样定义的:
F[0] = 0
F[1] = 1
for each i ≥ 2: F[i] = F[i-1] + F[i-2]
因此,Fibonacci数列就形如:0, 1, 1, 2, 3, 5, 8, 13, …,在Fibonacci数列中的数我们称为Fibonacci数。给你一个N,你想让其变为一个Fibonacci数,每一步你可以把当前数字X变为X-1或者X+1,现在给你一个数N求最少需要多少步可以变为Fibonacci数。
2. 输入描述
输入为一个正整数N(1 ≤ N ≤ 1,000,000)
3. 输出描述
输出一个最小的步数变为Fibonacci数"
4. 示例
输入:
15
输出:
2
5. 解题思路
- 本题是对于Fibonacci数列的一个考察,Fibonacci数列的性质是第一项和第二项都为1,后面的项形成递归:F(n) = F(n - 1) + F(n - 2)。
- 通过先找到距离N最近的两个Fibonacci数,这两个数分别取自距离N的最近的左边一个数L和右边一个数R,然后通过min(N - L, R - N)找到最小步数。
6. 代码
import java.util.Scanner;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int left = 0;
int right = 1;
int temp = 0;
while (n >= right) {
temp = left + right;
left = right;
right = temp;
}
int result = Math.min(n - left, right - n);
System.out.println(result);
}
}
二、合法括号序列判断
1. 题目描述
给定一个字符串A和其长度n,请返回一个bool值代表它是否为一个合法的括号串(只能由括号组成)。
2. 示例
测试样例:
“(()())”,6
返回:true
测试样例:
“()a()()”,7
返回:false
测试样例:
“()(()()”,7
返回:false
3.题目分析
- 首先进行输入个数n的判断,如果n%2!=0,则直接返回false;
- 用栈结构实现,栈中存放左括号,当遇到右括号之后,检查栈中是否有左括号,如果有则出栈,如果没有,则说明不匹配,直接返回false;
- 如果既不是左括号,也不是右括号,直接返回false;
- 当遍历完所有括号时,栈为空,则返回true。
4. 代码
import java.util.*;
import java.util.Stack;
//用栈来存储
public class Parenthesis {
public boolean chkParenthesis(String A, int n) {
if (n % 2 != 0) {
return false;
}
Stack<Character> stack = new Stack<>();
for (char ch : A.toCharArray()) {
if (ch == '(') {
stack.push(ch);
} else if (ch == ')') {
if (stack.isEmpty()) {
return false;
} else if (stack.peek() == '(') {
stack.pop();
}
} else {
return false;
}
}
return true;
}
}