给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
你必须设计并实现时间复杂度为 O(log n)
的算法解决此问题。
思考:时间复杂度为 O(log n)
再加上非递减顺序排列数组——自然而然要想到用二分法。且题目只要求找到目标值或给出目标值在数组中被顺序插入的位置,并不需要真的把目标值插入到数组中。于是当目标值在数组中不存在时,不再返回-1,而是返回left。
class Solution {
public int searchInsert(int[] nums, int target) {
int l=0,r=nums.length;
while(l<r){
int mid=l+((r-l)+l)>>1;
if(target==nums[mid]){
return mid;
}else if(target>nums[mid]){
l=mid+1;
}else{
r=mid;
}
}
return l;
}
}
34. 在排序数组中查找元素的第一个和最后一个位置
第一次写的跑错的代码,主体还是用二分法,如下:只通过了部分测试用例
class Solution {
public int[] searchRange(int[] nums, int target) {
int l=0,r=nums.length;
while(l<r){
int mid=l+(r-l)>>1;
if(target < nums[mid]){
r=mid;
}else if(target>nums[mid]){
l=mid+1;
}else{
if((mid+1)<nums.length)
return new int[]{mid,mid+1};
return new int[]{mid};
}
}
return new int[]{-1,-1};
}
}
改进,把使用左闭右开区间的二分法抽成一个方法:
class Solution {
public int[] searchRange(int[] nums, int target) {
int index=binarySearch(nums,target); //二分查找
if(index==-1){ //nums中不存在target,直接返回{-1,-1}
return new int[]{-1,-1};
}
//nums中存在target,则左右滑动指针,来找到符合题意的区间
int left=index;
int right=index;
//向左滑动,找左边界
while((left-1>=0) && nums[left-1]==nums[index]){//防止数组越界,逻辑短路 两个条件顺序不能换
left--;
}
//向右滑动,找右边界
while((right+1<nums.length) && nums[right+1]==nums[index]){//防止数组越界
right++;
}
return new int[]{left,right};
}
public int binarySearch(int[] nums, int target){
int left=0,right=nums.length;
while(left<right){
int mid=left+((right-left)>>1);
if(target<nums[mid]){
right=mid;
}else if(target>nums[mid]){
left=mid+1;
}else{
return mid;
}
}
return -1;
}
}