堆
public static class MyMaxHeap {
private int[] heap;
private final int limit;
private int heapSize;
public MyMaxHeap(int limit) {
heap = new int[limit];
this.limit = limit;
heapSize = 0;
}
public boolean isEmpty() {
return heapSize == 0;
}
public boolean isFull() {
return heapSize == limit;
}
public void push(int value) {
if (heapSize == limit) {
throw new RuntimeException("heap is full");
}
heap[heapSize] = value;
// value heapSize
heapInsert(heap, heapSize++);
}
// 用户此时,让你返回最大值,并且在大根堆中,把最大值删掉
// 剩下的数,依然保持大根堆组织
public int pop() {
int ans = heap[0];
swap(heap, 0, --heapSize);
heapify(heap, 0, heapSize);
return ans;
}
// 新加进来的数,现在停在了index位置,请依次往上移动,
// 移动到0位置,或者干不掉自己的父亲了,停!
private void heapInsert(int[] arr, int index) {
// [index] [index-1]/2
// index == 0
while (arr[index] > arr[(index - 1) / 2]) {
swap(arr, index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
// 从index位置,往下看,不断的下沉
// 停:较大的孩子都不再比index位置的数大;已经没孩子了
private void heapify(int[] arr, int index, int heapSize) {
int left = index * 2 + 1;
while (left < heapSize) { // 如果有左孩子,有没有右孩子,可能有可能没有!
// 把较大孩子的下标,给largest
int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
largest = arr[largest] > arr[index] ? largest : index;
if (largest == index) {
break;
}
// index和较大孩子,要互换
swap(arr, largest, index);
index = largest;
left = index * 2 + 1;
}
}
private void swap(int[] arr, int i, int j) {
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
}
public static class RightMaxHeap {
private int[] arr;
private final int limit;
private int size;
public RightMaxHeap(int limit) {
arr = new int[limit];
this.limit = limit;
size = 0;
}
public boolean isEmpty() {
return size == 0;
}
public boolean isFull() {
return size == limit;
}
public void push(int value) {
if (size == limit) {
throw new RuntimeException("heap is full");
}
arr[size++] = value;
}
public int pop() {
int maxIndex = 0;
for (int i = 1; i < size; i++) {
if (arr[i] > arr[maxIndex]) {
maxIndex = i;
}
}
int ans = arr[maxIndex];
arr[maxIndex] = arr[--size];
return ans;
}
}
public static class MyComparator implements Comparator<Integer>{
@Override
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
}
PriorityQueue默认是小根堆
假如堆里面中间有某数变了,执行1)heapinsert 2)heapify,就能把堆排对了
堆排序
// 堆排序额外空间复杂度O(1)
public static void heapSort(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
// O(N*logN)
// for (int i = 0; i < arr.length; i++) { // O(N)
// heapInsert(arr, i); // O(logN)
// }
// O(N)
for (int i = arr.length - 1; i >= 0; i--) {
heapify(arr, i, arr.length);
}
int heapSize = arr.length;
swap(arr, 0, --heapSize);
// O(N*logN)
while (heapSize > 0) { // O(N)
heapify(arr, 0, heapSize); // O(logN)
swap(arr, 0, --heapSize); // O(1)
}
}
// arr[index]刚来的数,往上
public static void heapInsert(int[] arr, int index) {
while (arr[index] > arr[(index - 1) / 2]) {
swap(arr, index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
// arr[index]位置的数,能否往下移动
public static void heapify(int[] arr, int index, int heapSize) {
int left = index * 2 + 1; // 左孩子的下标
while (left < heapSize) { // 下方还有孩子的时候
// 两个孩子中,谁的值大,把下标给largest
// 1)只有左孩子,left -> largest
// 2) 同时有左孩子和右孩子,右孩子的值<= 左孩子的值,left -> largest
// 3) 同时有左孩子和右孩子并且右孩子的值> 左孩子的值, right -> largest
int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
// 父和较大的孩子之间,谁的值大,把下标给largest
largest = arr[largest] > arr[index] ? largest : index;
if (largest == index) {
break;
}
swap(arr, largest, index);
index = largest;
left = index * 2 + 1;
}
}
public static void swap(int[] arr, int i, int j) {
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
public static void sortedArrDistanceLessK(int[] arr, int k) {
if (k == 0) {
return;
}
// 默认小根堆
PriorityQueue<Integer> heap = new PriorityQueue<>();
int index = 0;
// 0...K-1
for (; index <= Math.min(arr.length - 1, k - 1); index++) {
heap.add(arr[index]);
}
int i = 0;
for (; index < arr.length; i++, index++) {
heap.add(arr[index]);
arr[i] = heap.poll();
}
while (!heap.isEmpty()) {
arr[i++] = heap.poll();
}
}
法1:
public static int maxCover1(int[][] lines) {
int min = Integer.MAX_VALUE;
int max = Integer.MIN_VALUE;
for (int i = 0; i < lines.length; i++) {
min = Math.min(min, lines[i][0]);
max = Math.max(max, lines[i][1]);
}
int cover = 0;
for (double p = min + 0.5; p < max; p += 1) {
int cur = 0;
for (int i = 0; i < lines.length; i++) {
if (lines[i][0] < p && lines[i][1] > p) {
cur++;
}
}
cover = Math.max(cover, cur);
}
return cover;
}
法2:
public static int maxCover2(int[][] m) {
Line[] lines = new Line[m.length];
for (int i = 0; i < m.length; i++) {
lines[i] = new Line(m[i][0], m[i][1]);
}
Arrays.sort(lines, new StartComparator());
// 小根堆,每一条线段的结尾数值,使用默认的
PriorityQueue<Integer> heap = new PriorityQueue<>();
int max = 0;
for (int i = 0; i < lines.length; i++) {
// lines[i] -> cur 在黑盒中,把<=cur.start 东西都弹出
while (!heap.isEmpty() && heap.peek() <= lines[i].start) {
heap.poll();
}
heap.add(lines[i].end);
max = Math.max(max, heap.size());
}
return max;
}
public static class Line {
public int start;
public int end;
public Line(int s, int e) {
start = s;
end = e;
}
}
public static class EndComparator implements Comparator<Line> {
@Override
public int compare(Line o1, Line o2) {
return o1.end - o2.end;
}
}
加强堆
import java.util.ArrayList;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
/*
* T一定要是非基础类型,有基础类型需求包一层
*/
public class HeapGreater<T> {
private ArrayList<T> heap;
private HashMap<T, Integer> indexMap;
private int heapSize;
private Comparator<? super T> comp;
public HeapGreater(Comparator<T> c) {
heap = new ArrayList<>();
indexMap = new HashMap<>();
heapSize = 0;
comp = c;
}
public boolean isEmpty() {
return heapSize == 0;
}
public int size() {
return heapSize;
}
public boolean contains(T obj) {
return indexMap.containsKey(obj);
}
public T peek() {
return heap.get(0);
}
public void push(T obj) {
heap.add(obj);
indexMap.put(obj, heapSize);
heapInsert(heapSize++);
}
public T pop() {
T ans = heap.get(0);
swap(0, heapSize - 1);
indexMap.remove(ans);
heap.remove(--heapSize);
heapify(0);
return ans;
}
public void remove(T obj) {
T replace = heap.get(heapSize - 1);
int index = indexMap.get(obj);
indexMap.remove(obj);
heap.remove(--heapSize);
if (obj != replace) {
heap.set(index, replace);
indexMap.put(replace, index);
resign(replace);
}
}
public void resign(T obj) {
heapInsert(indexMap.get(obj));
heapify(indexMap.get(obj));
}
// 请返回堆上的所有元素
public List<T> getAllElements() {
List<T> ans = new ArrayList<>();
for (T c : heap) {
ans.add(c);
}
return ans;
}
private void heapInsert(int index) {
while (comp.compare(heap.get(index), heap.get((index - 1) / 2)) < 0) {
swap(index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
private void heapify(int index) {
int left = index * 2 + 1;
while (left < heapSize) {
int best = left + 1 < heapSize && comp.compare(heap.get(left + 1), heap.get(left)) < 0 ? (left + 1) : left;
best = comp.compare(heap.get(best), heap.get(index)) < 0 ? best : index;
if (best == index) {
break;
}
swap(best, index);
index = best;
left = index * 2 + 1;
}
}
private void swap(int i, int j) {
T o1 = heap.get(i);
T o2 = heap.get(j);
heap.set(i, o2);
heap.set(j, o1);
indexMap.put(o2, i);
indexMap.put(o1, j);
}
}
法1:
public static class Customer {
public int id;
public int buy;
public int enterTime;
public Customer(int v, int b, int o) {
id = v;
buy = b;
enterTime = 0;
}
}
public static class CandidateComparator implements Comparator<Customer> {
@Override
public int compare(Customer o1, Customer o2) {
return o1.buy != o2.buy ? (o2.buy - o1.buy) : (o1.enterTime - o2.enterTime);
}
}
public static class DaddyComparator implements Comparator<Customer> {
@Override
public int compare(Customer o1, Customer o2) {
return o1.buy != o2.buy ? (o1.buy - o2.buy) : (o1.enterTime - o2.enterTime);
}
}
public static class WhosYourDaddy {
private HashMap<Integer, Customer> customers;
private HeapGreater<Customer> candHeap;
private HeapGreater<Customer> daddyHeap;
private final int daddyLimit;
public WhosYourDaddy(int limit) {
customers = new HashMap<Integer, Customer>();
candHeap = new HeapGreater<>(new CandidateComparator());
daddyHeap = new HeapGreater<>(new DaddyComparator());
daddyLimit = limit;
}
// 当前处理i号事件,arr[i] -> id, buyOrRefund
public void operate(int time, int id, boolean buyOrRefund) {
//退货 不在任何区
if (!buyOrRefund && !customers.containsKey(id)) {
return;
}
if (!customers.containsKey(id)) {
customers.put(id, new Customer(id, 0, 0));
}
Customer c = customers.get(id);
if (buyOrRefund) {
c.buy++;
} else {
c.buy--;
}
if (c.buy == 0) {
customers.remove(id);
}
if (!candHeap.contains(c) && !daddyHeap.contains(c)) {
if (daddyHeap.size() < daddyLimit) {
c.enterTime = time;
daddyHeap.push(c);
} else {
c.enterTime = time;
candHeap.push(c);
}
} else if (candHeap.contains(c)) {
if (c.buy == 0) {
candHeap.remove(c);
} else {
candHeap.resign(c);
}
} else {
if (c.buy == 0) {
daddyHeap.remove(c);
} else {
daddyHeap.resign(c);
}
}
daddyMove(time);
}
public List<Integer> getDaddies() {
List<Customer> customers = daddyHeap.getAllElements();
List<Integer> ans = new ArrayList<>();
for (Customer c : customers) {
ans.add(c.id);
}
return ans;
}
private void daddyMove(int time) {
if (candHeap.isEmpty()) {
return;
}
if (daddyHeap.size() < daddyLimit) {
Customer p = candHeap.pop();
p.enterTime = time;
daddyHeap.push(p);
} else {
if (candHeap.peek().buy > daddyHeap.peek().buy) {
Customer oldDaddy = daddyHeap.pop();
Customer newDaddy = candHeap.pop();
oldDaddy.enterTime = time;
newDaddy.enterTime = time;
daddyHeap.push(newDaddy);
candHeap.push(oldDaddy);
}
}
}
}
//主方法
public static List<List<Integer>> topK(int[] arr, boolean[] op, int k) {
List<List<Integer>> ans = new ArrayList<>();
WhosYourDaddy whoDaddies = new WhosYourDaddy(k);
for (int i = 0; i < arr.length; i++) {
whoDaddies.operate(i, arr[i], op[i]);
ans.add(whoDaddies.getDaddies());
}
return ans;
}
法2:
// 干完所有的事,模拟,不优化
public static List<List<Integer>> compare(int[] arr, boolean[] op, int k) {
HashMap<Integer, Customer> map = new HashMap<>();
ArrayList<Customer> cands = new ArrayList<>();
ArrayList<Customer> daddy = new ArrayList<>();//得奖区
List<List<Integer>> ans = new ArrayList<>();
for (int i = 0; i < arr.length; i++) {
int id = arr[i];
boolean buyOrRefund = op[i];
if (!buyOrRefund && !map.containsKey(id)) {
ans.add(getCurAns(daddy));
continue;
}
// 没有发生:用户购买数为0并且又退货了
// 用户之前购买数是0,此时买货事件
// 用户之前购买数>0, 此时买货
// 用户之前购买数>0, 此时退货
if (!map.containsKey(id)) {
map.put(id, new Customer(id, 0, 0));
}
// 买、卖
Customer c = map.get(id);
if (buyOrRefund) {
c.buy++;
} else {
c.buy--;
}
if (c.buy == 0) {
map.remove(id);
}
// c
// 下面做
if (!cands.contains(c) && !daddy.contains(c)) {
if (daddy.size() < k) {
c.enterTime = i;
daddy.add(c);
} else {
c.enterTime = i;
cands.add(c);
}
}
cleanZeroBuy(cands);
cleanZeroBuy(daddy);
cands.sort(new CandidateComparator());
daddy.sort(new DaddyComparator());
move(cands, daddy, k, i);
ans.add(getCurAns(daddy));
}
return ans;
}
public static void move(ArrayList<Customer> cands, ArrayList<Customer> daddy, int k, int time) {
if (cands.isEmpty()) {
return;
}
// 候选区不为空
if (daddy.size() < k) {
Customer c = cands.get(0);
c.enterTime = time;
daddy.add(c);
cands.remove(0);
} else { // 等奖区满了,候选区有东西
if (cands.get(0).buy > daddy.get(0).buy) {
Customer oldDaddy = daddy.get(0);
daddy.remove(0);
Customer newDaddy = cands.get(0);
cands.remove(0);
newDaddy.enterTime = time;
oldDaddy.enterTime = time;
daddy.add(newDaddy);
cands.add(oldDaddy);
}
}
}
public static void cleanZeroBuy(ArrayList<Customer> arr) {
List<Customer> noZero = new ArrayList<Customer>();
for (Customer c : arr) {
if (c.buy != 0) {
noZero.add(c);
}
}
arr.clear();
for (Customer c : noZero) {
arr.add(c);
}
}
public static List<Integer> getCurAns(ArrayList<Customer> daddy) {
List<Integer> ans = new ArrayList<>();
for (Customer c : daddy) {
ans.add(c.id);
}
return ans;
}