计算机内数据的存储

目录

1.整数在内存中的存储

2.大端与小端

3.浮点数在内存中的存储


1.整数在内存中的存储

1.1 整形归类

整形有 char、short、int、long,其中每一种都分为有符号(signed)和无符号(unsigned)两种。

整形在内存中以二进制形式存储,其中有符号(signed)整形的二进制表示分为数值位符号位 ,符号位若为 0 ,则为正数,符号位为 1 则为负数,例如 a = -10  b = 10;a  b 在32位的计算机中的二进制原码表示如下

a : 10000000 00000000 00000000 00001010

b : 00000000 00000000 00000000 00001010

1.2 原码、反码、补码

上面 a b 的二进制表示例子中我们提到了原码,原码是什么呢?

原码:直接将数值按照正负数的形式翻译成二进制

而在计算机中,数据并非以二进制的形式存储,计算机中,整数有三种二进制的表示方法,分别是:原码、反码、补码  ,其中,正数的原码、反码、补码相同。

反码:取原码的符号位不变,其他所有位按位取反

补码:反码 + 1

计算机中,整形以补码的形式存放于内存中,为什么呢?

计算机的核心,也就是中央处理器(CPU)只有加法器,没有减法器,因此在计算机中想要完成10 - 5 这样的减法计算,就需要让CPU改为执行 10 + (-5)这样的加法运算,而10的原反补码相同,均为:00000000 00000000 00000000 00001010 ,而 -5则不同, -5 的原码是:

10000000 00000000 00000000 00000101 ,因此,执行上述加法后的结果为:

10000000 00000000 00000000 00001111 对应 -15 的原码,这显然不是我们想要得到的结果,为了保证运算过程与加法相同,因此发明了反码与补码,如上所述,-5 的补码是:

11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011,与 10 的补码(正数三码相同)相加后得:1 00000000 00000000 00000000 00000101,得到了一个大于32位(33位)的二进制数,但因为整形存储的最大字节长度为32,因此超出范围的位数会被截断,最终得到的结果是:00000000 00000000 00000000 00000101,是5的二进制补码(正数三码相同)表示形式,成功解决了CPU减法的计算问题,且不需要额外的硬件电路。

2.大端与小端

2.1 什么是大端与小端

我们来实践看一下计算机内存中存储的整形数据,如下图

#include<stdio.h>

int main()
{
	int a = 10;
	int b = -5;
	return 0;
}

我们写好上述代码后 F10 开启调试,在上面的调试选项卡中找到窗口→内存,在地址中输入“&a”就能看到 a 在内存中的存储形式:

 

可以看到,a = 10;其中 a 的数据 10 在内存中的存储形式是 01 00 00 00 , 这里我们看到的是内存中的数据以十六进制的形式呈现的,而十六进制的 a 就是10,b是11...其中每一个数字代表二进制的四个字节,因此实际的存储形式呈现出来是:0000 1010   0000 0000   0000 0000   0000 0000,这么一看,我们发现和我们计算得到的00000000 00000000 0000000 00001010有不小的区别,仿佛是把最后的8个字节放到了最开头。这时我们猜测计算机中它的储存方式可能是倒着存放,为了证实这个猜想,我们用如下代码:

int main()
{
	int a = 0x11223344;
	return 0;
}

 我们可以看到,我们给a赋值了一个16进制的 11223344,他在内存中却用44 33 22 11存放,这是为什么呢?

 这是因为我的电脑采用的是小端存储方法,什么是小端存储方法呢?

小端存储模式:数据的低位保存在内存的低地址中,而数据的高位保存在内存的高地址中。

有大就有小,与之对应的还有大端存储模式。

大端存储模式:数据的低位保存在内存的高地址中,而数据的高位保存在内存的低地址中。

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元
都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short
型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32
位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因
此就导致了大端存储模式和小端存储模式。
例如:一个16bit 的short 型x ,在内存中的地址为0x0010 , x 的值为0x1122 ,那么0x11 为高字节, 0x22 为低字节。

对于大端模式,就将0x11 放在低地址中,即0x0010 中, 0x22 放在高地址中,即0x0011 中。

小端模式,刚好相反。我们常用的X86 结构是小端模式,而KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

2.2 如何判断大端与小端

上面的内容告诉我们,大端与小端存储模式相反,而大端存储模式视觉上和我们日常手写数据的方向顺序相同,那么我们能否用一个代码来判断我们的计算机使用了那种存储方式呢?

思路我们也可以想到,就是自己确定一个大端存储与小端存储有明显差异的数,分别取出他们的一部分进行比较,就能得到出结果。这里我选择 1 ,因为 1 在32位计算机中的二进制存储为:

00000000 00000000 00000000 00000001

不难发现,采用大端存储方法的话,最开头的数全部都是 0,而采用小端存储的话,开头则是 1,计算机中 0 1 总有着不同的作用,那么代码如下:

void BigOrSmall()
{
	int a = 1;
	char* p = (char*)&a;
	if (*p == 1)
	{
		printf("small\n");
	}
	else
	{
		printf("big\n");
	}
}

int main()
{
	BigOrSmall();

	return 0;
}

判断大小端只需要取出一个整形的部分数据进行比较,因此我们用 char 类型的指针,因为 char类型的大小为1字节,而int为4字节,因此取a的地址后使用强制类型转换就能得到内存中a的第一个字节,因为a是1,因此只需要判断 p在解引用后是否为1,若为1,则说明内存中的a存储是

00000001 0000000 00000000 00000000,为小端存储方法,否则为大端存储方式。

这里我们还可以继续优化,因为 0 在C语言中表示为否,因此我们可以将(char*)&a 的值返回并用于判断。

int BigOrSmall()
{
	int a = 1;
	return *(char*)&a;
}

int main()
{
	if (BigOrSmall)
	{
		printf("small");
	}
	else
		printf("big");

	return 0;
}

这里我们直接将函数的返回值用于判断,若返回非 0 ,则为大端,返回 0 则为小端。

3.浮点数在内存中的存储

3.1 浮点型归类

浮点型有 float(单精度浮点型)和double(双精度浮点型)两大类,其中也有 long double 等。

浮点数存储的例子:

int main()
{
    int n = 9;
    float *pFloat = (float *)&n;
    printf("n的值为:%d\n",n);
    printf("*pFloat的值为:%f\n",*pFloat);
    *pFloat = 9.0;
    printf("num的值为:%d\n",n);
    printf("*pFloat的值为:%f\n",*pFloat);
    return 0;
}

我们可以发现,num 和 *pfloat 在内存中虽然是同一个数,但由于一个是以整形的形式一个则是以浮点型的形式解读而产生了巨大的差异,他们产生巨大差异的本质原因在于浮点数在计算机内部的表示方法。

3.2 浮点数存储规则

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
        (-1)^S * M * 2^E
        (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
        M表示有效数字,大于等于1,小于2。
        2^E表示指数位。

举例来说:
十进制的 5.0 ,写成二进制是 101.0  ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的 -5.0 ,写成二进制是 -101.0  ,相当于 -1.01×2^2  。那么,S=1,M=1.01,E=2。

IEEE754还规定,对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成1.xxxxxx 的形式,其中xxxxxx表示小数部分
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
然后,指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进
制表示形式为:

0 01111110 00000000 00000000 00000000

E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值