目录
单机的 Elasticsearch 做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。
解决方案:
- 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
- 单点故障问题:将分片数据在不同节点备份(replica )
ES集群相关概念:
-
集群(cluster):一组拥有共同的 cluster name 的 节点。
-
节点(node) :集群中的一个 Elasticearch 实例
-
分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中,解决数据量太大,单点存储量有限的问题。
此处,我们把数据分成3片:shard0、shard1、shard2
主分片(Primary shard):相对于副本分片的定义。
副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。
数据备份可以保证高可用,但是每个分片备份一份在节点上,所需要的节点数量就会翻倍,成本太高。为了在高可用和成本间寻求平衡
- 首先对数据分片,存储到不同节点
- 然后对每个分片进行备份,放到对方节点,完成互相备份
这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:
现在,每个分片都有1个备份,存储在3个节点:
- node0:保存了分片0和1
- node1:保存了分片0和2
- node2:保存了分片1和2
部署集群
搭建Elasticsearch
我们会在单机上利用 Docker 容器运行多个 Elasticsearch 实例来模拟集群。
可以直接使用 docker-compose 来完成,这要求你的Linux虚拟机至少有4G以上的内存空间。
docker-compose.yml
version: '2.2'
services:
es01:
image: elasticsearch:7.12.1
container_name: es01
environment:
- node.name=es01
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es02,es03
- cluster.initial_master_nodes=es01,es02,es03
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- data01:/usr/share/elasticsearch/data
ports:
- 9200:9200
networks:
- elastic
es02:
image: elasticsearch:7.12.1
container_name: es02
environment:
- node.name=es02
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es03
- cluster.initial_master_nodes=es01,es02,es03
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- data02:/usr/share/elasticsearch/data
ports:
- 9201:9200
networks:
- elastic
es03:
image: elasticsearch:7.12.1
container_name: es03
environment:
- node.name=es03
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es02
- cluster.initial_master_nodes=es01,es02,es03
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- data03:/usr/share/elasticsearch/data
networks:
- elastic
ports:
- 9202:9200
volumes:
data01:
driver: local
data02:
driver: local
data03:
driver: local
networks:
elastic:
driver: bridge
修改 Linux 系统权限,修改 /etc/sysctl.conf
文件
vi /etc/sysctl.conf
添加下面的内容
vm.max_map_count=262144
让配置生效:
sysctl -p
通过docker-compose启动集群
docker-compose up -d
集群状态监控
kibana 可以监控 Elasticsearch 集群,但是更推荐使用 cerebro
下载解压打开 /bin/cerebro.bat
访问 http://localhost:9000 即可进入管理界面
输入任意节点的地址和端口,点击 connect
绿色的线条代表集群处于绿色(健康状态)
创建索引库
我们还可以通过 cerebro 创建索引库,当然你需要使用 kibana 也可以。
填写索引库信息
回到首页,即可查看索引库分片效果
集群职责划分
Elasticsearch 中集群节点有不同的职责划分
默认情况下,集群中的任何一个节点都同时兼职上述四种角色。
真实的集群一定要将集群职责分离
- master 节点:对 CPU 要求高,但是内存要求低
- data 节点:对 CPU 和内存要求都高
- coordinating 节点:对网络带宽、CPU 要求高
职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。
集群脑裂问题
脑裂是因为集群中的节点失联导致的。
例如一个集群中,主节点 node1 与其它节点失联。
此时,node2 和 node3 认为 node1 宕机,就会重新选主。
当 node3 当选后,集群继续对外提供服务,node2 和 node3 自成集群,node1 自成集群,两个集群数据不同步,出现数据差异。
当网络恢复后,因为集群中有两个 master 节点,集群状态的不一致,出现脑裂的情况。
解决脑裂的方案是,要求选票超过 (eligible节点数量+1)/2 才能当选为 master,因此 eligible 节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes
,在版本 7.0 以后,已经成为默认配置,因此一般不会发生脑裂问题。
例如:3个节点形成的集群,选票必须超过 (3+1)/2 ,也就是 2 票。node3 得到 node2 和 node3 的选票,当选为 master。node1 只有自己 1 票,没有当选。集群中依然只有1个主节点,没有出现脑裂。
集群分布式存储
当新增文档时,应该保存到不同分片,保证数据均衡,那么 coordinating node 如何确定数据该存储到哪个分片呢?
Elasticsearch 会通过 hash 算法来计算文档应该存储到哪个分片
- _routing 默认是文档的 id
- 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!
新增文档的流程如下图,
- 新增一个 id=1 的文档
- 对 id 做 hash 运算,假如得到的是 2,则应该存储到 shard-2
- shard-2 的主分片在 node3 节点,将数据路由到 node3,node3 保存文档
- 同步给 shard-2 的副本分片2(R-2),在 node2 节点
- 返回结果给 coordinating-node 节点(node1)
集群分布式查询
Elasticsearch 查询分成两个阶段
-
scatter phase:分散阶段,coordinating node 会把请求分发到每一个分片。
-
gather phase:聚集阶段,coordinating node 汇总 data node 的搜索结果,并处理为最终结果集返回给用户。
集群故障转移
集群的 master 节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。
例如一个集群结构如图,三个都是健康的。
现在,node1 是主节点,其它两个节点是从节点。突然,node1 发生了故障
宕机后的第一件事,需要重新选主,例如选中了 node2
node2 成为主节点后,会检测集群监控状态,将 node1 上的数据迁移到 node2、node3,确保数据依旧正常访问。