数据库进阶 SQL优化

数据库进阶 SQL优化

插入数据

insert:

如果我们需要一次性往数据库表中插入多条记录,可以从以下三个方面进行优化。

insert into tb_test values(1,‘tom’);
insert into tb_test values(2,‘cat’);
insert into tb_test values(3,‘jerry’);…

一,批量插入数据

Insert into tb_test values(1,‘Tom’),(2,‘Cat’),(3,‘Jerry’);

二,手动控制事务

start transaction;
insert into tb_test values(1,‘Tom’),(2,‘Cat’),(3,‘Jerry’);
insert into tb_test values(4,‘Tom’),(5,‘Cat’),(6,‘Jerry’);
insert into tb_test values(7,‘Tom’),(8,‘Cat’),(9,‘Jerry’);
commit;

三,主键顺序插入,性能要高于乱序插入。

主键乱序插入 : 8 1 9 21 88 2 4 15 89 5 7 3
主键顺序插入 : 1 2 3 4 5 7 8 9 15 21 88 89

大批量插入数据:

如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。

主键优化

数据组织方式:

在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表

行数据,都是存储在聚集索引的叶子节点上的。

在InnoDB引擎中,数据行是记录在逻辑结构 page 页中的,而每一个页的大小是固定的,默认16K。
那也就意味着, 一个页中所存储的行也是有限的,如果插入的数据行row在该页存储不下,将会存储
到下一个页中,页与页之间会通过指针连接。

页分裂:

页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。

当主键乱序插入时,新增一行数据要插入时,可能不会正常新开一页插入,容易产生页分裂,此时,需要重新设置链表指针,比较耗费性能。

页合并:

当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间
变得允许被其他记录声明使用。

当页中删除的记录达到 MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前
或后)看看是否可以将两个页合并以优化空间使用。

MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。

索引设计原则:

  1. 满足业务需求的情况下,尽量降低主键的长度。
    (聚集索引只有一个,但是二级索引有多个,而二级索引叶子节点存放的值就是主键,若主键很长,则会浪费大量的空间)
  2. 插入数据时,尽量选择顺序插入,选择使用 AUTO_INCREMENT自增主键。
    (若为顺序插入,则页数据是一页一页的顺序增加,但是若为乱序插入,则可能会出现 页分裂)
  3. 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
    (这种设置的主键为乱序,所以在插入时可能会出现 页分裂,并且主键长度相对较长,在检索时会耗费大量的磁盘空间)
  4. 业务操作时,避免对主键的修改。
    (主键作为唯一的标识,若修改主键,还需要修改索引结构,代价大);

order by优化

MySQL的排序,有两种方式:
Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sortbuffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。
Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高。
对于以上的两种排序方式,Using index的性能高,而Using filesort的性能低,我们在优化排序操作时,尽量要优化为 Using index。

order by优化原则:
A. 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
B. 尽量使用覆盖索引。
C. 多字段排序, 一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
D. 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小
sort_buffer_size(默认256k)。

group by优化

分组操作时,可以通过索引来提高效率。
分组操作时,索引的使用也是满足最左前缀法则的。

limit优化

在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。当在进行分页查询时,如果执行 limit 2000000,10 ,此时需要MySQL排序前2000010 记
录,仅仅返回 2000000 - 2000010 的记录,其他记录丢弃,查询排序的代价非常大

优化思路: 一般分页查询时,通过 创建覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

explain select * from tb_sku t , (select id from tb_sku order by id
limit 2000000,10) a where t.id = a.id;

count优化

count(主键):
InnoDB 引擎会遍历整张表,把每一行的 主键id 值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null)
count(字段):
没有not null 约束 : InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。有not null 约束:InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。
count(数字):
InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。
count(*):
InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加,最快。老版本需要把数据一行一行地从引擎里面读出来,然后累积计数,最慢。

按照效率排序的话,count(字段) < count(主键 id) < count(1) ≈ count(),所以尽
量使用 count(
)。

update优化

我们主要需要注意一下update语句执行时的注意事项。

update course set name = ‘javaEE’ where id = 1 ;

当我们在执行删除的SQL语句时,会锁定id为1这一行的数据,然后事务提交之后,行锁释放。但是当我们在执行如下SQL时。

update course set name = ‘SpringBoot’ where name = ‘PHP’ ;

当我们开启多个事务,在执行上述的SQL时,我们发现行锁升级为了表锁。 导致该update语句的性能大大降低。

注意:InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,并且该索引不能失效,否则会从行锁升级为表锁 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

止水2.0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值