1626. 无矛盾的最佳球队
假设你是球队的经理。对于即将到来的锦标赛,你想组合一支总体得分最高的球队。球队的得分是球队中所有球员的分数 总和 。
然而,球队中的矛盾会限制球员的发挥,所以必须选出一支 没有矛盾 的球队。如果一名年龄较小球员的分数 严格大于 一名年龄较大的球员,则存在矛盾。同龄球员之间不会发生矛盾。
给你两个列表 scores 和 ages,其中每组 scores[i] 和 ages[i] 表示第 i 名球员的分数和年龄。请你返回 所有可能的无矛盾球队中得分最高那支的分数 。
示例 1:
输入:scores = [1,3,5,10,15], ages = [1,2,3,4,5]
输出:34
解释:你可以选中所有球员。
示例 2:
输入:scores = [4,5,6,5], ages = [2,1,2,1]
输出:16
解释:最佳的选择是后 3 名球员。注意,你可以选中多个同龄球员。
示例 3:
输入:scores = [1,2,3,5], ages = [8,9,10,1]
输出:6
解释:最佳的选择是前 3 名球员。
提示:
1 <= scores.length, ages.length <= 1000
scores.length == ages.length 1
<= scores[i] <= 106 1 <= ages[i] <= 1000
原题链接
题解
我们可以先对年龄排个序,就转化成了最长公共子序列的问题,然后用DP思路解决掉
进一步学习最长公共子序列和
class Solution {
public:
int bestTeamScore(vector<int>& scores, vector<int>& ages) {
vector<vector<int>> mp;
int n = ages.size();
for(int i = 0 ; i < n ; i ++){
mp.push_back({ages[i],scores[i]});
}
sort(mp.begin(),mp.end());
int maxs = 0;
vector<int> f(n,0);
for(int i = 0; i <n ; i ++)
{
f[i] = mp[i][1];
for(int j = 0 ; j < i ; j ++)
{
if(mp[j][1]<=mp[i][1])
f[i] = max(f[i],f[j]+mp[i][1]);
}
}
int res = 0;
for(int i = 0 ; i<n ; i ++)
res = max(res,f[i]);
return res;
}
};