1626. 无矛盾的最佳球队

1626. 无矛盾的最佳球队

假设你是球队的经理。对于即将到来的锦标赛,你想组合一支总体得分最高的球队。球队的得分是球队中所有球员的分数 总和 。

然而,球队中的矛盾会限制球员的发挥,所以必须选出一支 没有矛盾 的球队。如果一名年龄较小球员的分数 严格大于 一名年龄较大的球员,则存在矛盾。同龄球员之间不会发生矛盾。

给你两个列表 scores 和 ages,其中每组 scores[i] 和 ages[i] 表示第 i 名球员的分数和年龄。请你返回 所有可能的无矛盾球队中得分最高那支的分数 。

示例 1:

输入:scores = [1,3,5,10,15], ages = [1,2,3,4,5]
输出:34
解释:你可以选中所有球员。

示例 2:

输入:scores = [4,5,6,5], ages = [2,1,2,1]
输出:16
解释:最佳的选择是后 3 名球员。注意,你可以选中多个同龄球员。

示例 3:

输入:scores = [1,2,3,5], ages = [8,9,10,1]
输出:6
解释:最佳的选择是前 3 名球员。

提示:

1 <= scores.length, ages.length <= 1000
scores.length == ages.length 1
<= scores[i] <= 106 1 <= ages[i] <= 1000

原题链接
题解
我们可以先对年龄排个序,就转化成了最长公共子序列的问题,然后用DP思路解决掉

进一步学习最长公共子序列和

class Solution {
public:
    int bestTeamScore(vector<int>& scores, vector<int>& ages) {
        vector<vector<int>> mp;
        int n = ages.size();
        for(int i = 0 ; i < n ; i ++){
            mp.push_back({ages[i],scores[i]});
        }
        sort(mp.begin(),mp.end());
        int maxs = 0;
        vector<int> f(n,0);
        for(int i = 0; i <n ; i ++)
        {
            f[i] = mp[i][1];
            for(int j = 0 ; j < i ; j ++)
            {
                if(mp[j][1]<=mp[i][1])
                f[i] = max(f[i],f[j]+mp[i][1]);
            }
        }
        int res = 0;
        for(int i = 0 ;  i<n ; i ++)
        res = max(res,f[i]);
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值