自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 用于交通预测的动态图形模型

本文研究的是交通预测问题,其目的是预测未来道路网络的交通状态。一个关键的挑战是,以前的方法缺乏对捕获时间依赖性的讨论,以及交通网络中位置之间的空间依赖性。此外,长期的流量预测并不令人满意。本文提出了一种交通动态图模型- tire,该模型由具有门控和注意机制的图卷积网络组成。TYRE可以学习所有相邻和遥远位置的“重要性”,控制相邻和遥远邻居信息的聚合,并学习时间依赖性以支持长有效历史大小。我们在两个不同的交通数据集(即PeMSD4和PeMSD8)上展示了我们方法的有效性和有效性。

2023-05-27 21:12:40 814 1

原创 动态时空相邻图卷积网络交通预测

在智能交通系统中,捕获复杂动态的交通数据时空依赖关系对于实现准确、实时的交通预测具有重要意义。交通位置之间的时空依赖关系往往是动态的,即不同位置的交通状态随其空间距离和所处时间片的相关性共同变化。现有的大多数基于图卷积网络的方法通常是分别捕获空间和时间依赖关系,然后将它们以并行或串行的方式组合起来以捕获时空特征。它们总是利用预定义的静态图结构来捕获同一时间片中的局部相关性和全局依赖性。这些方法不能直接学习跨时间片的动态时空依赖性。同时,单纯利用神经网络学习交通位置间的时空相关性知识是一个挑战。

2023-05-18 20:53:45 1071 1

原创 基于注意力的时空图卷积网络交通流预测

由于图信号的卷积运算等于通过图傅里叶变换变换到谱域的这些信号的乘积,因此上式可以理解为分别将gθ和x进行傅里叶变换到谱域,然后将它们的变换结果相乘,进行傅里叶反变换,得到卷积运算的最终结果。因此,周周期分量的设计是为了捕捉交通数据中的周周期特征。时间维度卷积:图卷积操作在空间维度捕获图上每个节点的相邻信息后,进一步堆叠时间维度的标准卷积层,通过合并相邻时间片上的信息来更新节点的信号,如图5右侧所示。它包括从原始的基于图的交通网络结构中捕获空间特征的图卷积和从附近的时间片描述依赖关系的时间维度的卷积。

2023-05-12 14:52:59 4726 3

原创 ST-MGAT:交通预测的时空多头图注意网络

需要强调的是,图注意卷积层的输入为特征F∈RN×D,其中N为节点数,D为输入特征的大小。在未来的工作中,我们将把我们的模型应用到一般的图上,并添加诸如天气条件等补充信息,以进一步提高模型的精度。我们将车道作为图中的边缘,将道路检测器放在车道上作为图上的点,交通状况的度量,如速度、流量和占用率,也被选择作为图中节点的特征。如图所示,批处理的输出仍然是图,这意味着对一个基本图的操作对于批处理的返回仍然是有效的。需要强调的是,这里提到的图是一个无向图,本文的目的是预测未来某一点图上所有节点的特征。

2023-05-09 21:18:37 578 1

原创 基于时空关注的多尺度卷积网络交通预测(MSCN)

我们的实验结果表明,MSCN优于最先进的基线。最后,在解码器中,一个卷积层、一个卷积池化层和一个扩展卷积层共同提取复杂的时空特征。(3)我们在两个公开的数据集上进行了大量的实验,以验证我们提出的模型在交通预测任务方面的效率。软阈值融合机制确保了有用的空间和时间特征得到更多的关注,同时去除了不有用的特征。为了对历史时间步长和未来时间步长之间的相关性进行建模,我们在中使用转换注意力来构建未来表示,然后将其馈送到解码器中。针对短期和长期的交通预测,三个卷积层同时处理短序列和超长序列,并发现各种范围的相关性。

2023-05-06 10:40:55 1586 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除