- 博客(2)
- 收藏
- 关注
原创 机器学习——模型评估和选择(2)
易知:方差和偏差具有矛盾性,这就是常说的偏差-方差窘境,随着训练程度的提升,期望预测值与真实值之间的差异越来越小,即偏差越来越小,但是另一方面,随着训练程度加大,学习算法对数据集的波动越来越敏感,方差值越来越大。在成对t检验的基本思想中,我们的前提是测试错误率是泛化错误率的独立采样,但是在k折交叉检验中,选择的训练/测试集难免会产生重叠,因此好的解决办法是使用5次2折交叉验证,使用第一次的两对差值计算均值,使用全部的差值对(即10对)计算方差,可以有效地避免这个问题。,若两个学习器性能相同,则。
2024-05-14 16:02:40 983 1
原创 机器学习——模型评估和选择(1)
P-R曲线如何评估呢?简单分析图像,可以得知:当FN=0时,TN也必须0,反之也成立,我们可以画一个队列,试着使用不同的截断点(即阈值)去分割队列,来分析曲线的形状,(0,0)表示将所有的样本预测为负例,(1,1)则表示将所有的样本预测为正例,(0,1)表示正例全部出现在负例之前的理想情况,(1,0)则表示负例全部出现在正例之前的最差情况。在分类任务中,即预测离散值的问题,最常用的是错误率和精度,错误率是分类错误的样本数占样本总数的比例,精度则是分类正确的样本数占样本总数的比例,易知:错误率+精度=1。
2024-05-13 15:39:09 1092
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人