关于无监督学习的相关介绍

本文介绍了无监督学习的目标与性质,重点探讨了聚类中的欧式距离、曼哈顿距离、马氏距离和余弦夹角四种距离度量方法,并简单提及了降维在无监督学习中的作用。
摘要由CSDN通过智能技术生成

无监督学习相关知识点

1 无监督学习的目标和性质

1.1 目标

无监督学习的目标:利用无标签的数据学习 数据的分布数据与数据之间的关系 被称为无监督学习。

1.2 性质

无监督学习的性质:
(1) 有监督学习和无监督学习的最大区别在于数据是否有标签
(2) 无监督学习最常应用的场景是聚类(clustering)和降维(Dimension Reduction)。

2 聚类(clustering)

聚类指的是根据数据的“相似性”将数据分为多类的过程。评估两个不同样本之间的相似性,通常使用的方法就是计算两个样本之间的“距离”。使用不同的方法计算样本间的距离会关系到聚类结果的好坏。
聚类的结果
图1:聚类的结果表示

2.1 欧式距离

欧式距离是最常用的一种距离度量方法。计算公式表示如下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值