AcWing 2041.干草堆
题目
贝茜对她最近在农场周围造成的一切恶作剧感到抱歉,她同意帮助农夫约翰把一批新到的干草捆堆起来。
开始时,共有 N 个空干草堆,编号 1∼N。
约翰给贝茜下达了 K 个指令,每条指令的格式为 A B
,这意味着贝茜要在 A…B范围内的每个干草堆的顶部添加一个新的干草捆。
例如,如果贝茜收到指令 10 13
,则她应在干草堆 10,11,12,13 中各添加一个干草捆。
在贝茜完成了所有指令后,约翰想知道 N 个干草堆的中值高度——也就是说,如果干草堆按照高度从小到大排列,位于中间的干草堆的高度。
方便起见,N 一定是奇数,所以中间堆是唯一的。
请帮助贝茜确定约翰问题的答案。
输入格式
第一行包含 N 和 K。
接下来 K 行,每行包含两个整数 A,B,用来描述一个指令。
输出格式
输出完成所有指令后,N 个干草堆的中值高度。
数据范围
1 ≤ N ≤ 106,
1 ≤ K ≤ 25000,
1 ≤ A ≤ B ≤ N
输入样例:
7 4
5 5
2 4
4 6
3 5
输出样例:
1
样例解释
贝茜完成所有指令后,各堆高度为 0,1,2,3,3,1,0。
将各高度从小到大排序后,得到0,0,1,1,2,3,3,位于中间的是 1。
解析:
这道题考的是差分的应用
首先对题目进行分析,题目要求编号1~N个整数序列,指令为[A,B]区间内的每个数+1,因为开始时,有N个空草堆,所以差分数组初始化为0
- 初始化差分数组diff
- 根据指令对[A,B]进行操作,diff[A]++,diff[B+1]- -
- 求出原数组的中间数
- 可以sort排序,然后找出中间的那个值
- 可以用nth_element()函数求出第k小的数,即第k个数为中间数,k=(left + right) / 2
- 该函数可以求出第k小的数
- 下标k之前都比arr[k]小
- 下标k之后都比arr[k]大
- 左右区间的数是无序的
代码如下
//AcWing 2041干草堆
#include<iostream>
#include<algorithm>
using namespace std;
void test() {
int N, K;
ios::sync_with_stdio(0);
cin >> N >> K;
// 差分数组初始化
int diff[N + 2] = { 0 };
for(int i = 0; i < K; i++){
int a, b;
cin >> a >> b;
// 差分数列操作
diff[a]++;
diff[b + 1]--;
}
// 原数组 = 等差数组前缀和
for(int i = 1; i <= N; i++){
diff[i] += diff[i-1];
}
//排序
// sort(diff+1,diff+N+1);
int mid = 1 + ((N - 1) >> 1);
// 求第mid小的数,操作之后,mid之前的数都比mid小,mid之后的数都比mid大,但是不是有序的
nth_element(diff + 1, diff + mid, diff + N + 1);
cout << diff[mid];
}
int main(){
test();
return 0;
}