动手学深度学习-李沐
文章平均质量分 83
不论是在学术突破还是在工业应用, 深度学习是人工智能在近十年里进展最为迅速的领域。然而,深度学习模型复杂、参数繁多、而且新模型层出不穷,这给学习带来了难度。
本课程将从零开始教授深度学习。同学们只需要有基础的Python编程和数学基础。我们将覆盖四大类模型:多层感知机、卷积神经网络、循环神经网络、
CS Learning
这个作者很懒,什么都没留下…
展开
-
动手学深度学习——第2.2节,数据预处理
由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”, pandas可以自动将此列转换为两列“Alley_Pave”和“Alley_nan”。巷子类型为“Pave”的行会将“Alley_Pave”的值设置为1,“Alley_nan”的值设置为0。缺少巷子类型的行会将“Alley_Pave”和“Alley_nan”分别设置为0和1。举一个例子,我们首先(创建一个人工数据集,并存储在CSV(逗号分隔值)文件,每一行是一个数据,每行中的每一项(特征)用逗号分开) …原创 2023-04-23 23:56:50 · 208 阅读 · 0 评论 -
动手学深度学习——第1节+第2.1节(数据操作)
下面的例子分别演示了当我们沿行(轴-0,竖直方向,相当于y轴,形状的第一个元素) 和按列(轴-1,横向,相当于x轴,形状的第二个元素)连结两个矩阵时,会发生什么情况。在下面的例子中,我们使用逗号来表示一个具有5个元素的元组,其中每个元素都是按元素操作的结果。如下所示,我们[可以用[-1]选择最后一个元素,可以用[1:3]选择第二个和第三个元素]——[1,3]表示左闭右开区间[1,3)所以实际上是第1行和第2行。如果只想知道张量中元素的总数,即形状的所有元素乘积,可以检查它的大小(size)。原创 2023-04-22 23:01:35 · 184 阅读 · 0 评论