原点矩
原点矩(Raw Moment or Moment about the Origin)是关于随机变量的原点(零点)的矩。它直接反映了数据本身的分布特征,而不考虑均值的位置。常用的原点矩包括:
- 一阶原点矩:即均值,表示数据的平均值。
- 二阶原点矩:与方差相关,但不完全相同。它表示数据的平方的期望。
- 三阶原点矩:用于计算数据的偏度。
- 四阶原点矩:用于计算数据的峰度。
中心矩
中心矩(Central Moment)是关于随机变量的期望值(均值)为中心的矩。它反映了数据相对于其均值的分布特征。常用的中心矩包括:
- 一阶中心矩:总是等于0,因为它是数据的均值。
- 二阶中心矩:称为方差,衡量数据的离散程度。
- 三阶中心矩:称为偏度,衡量数据分布的不对称性。
- 四阶中心矩:称为峰度,衡量数据分布的陡峭程度。
举例说明
假设我们有一组数据:x1,x2,…,xn
实际应用
- 原点矩:用于统计分析和概率计算,如均值和未中心化的矩,有助于理解数据的总体分布特征。
- 中心矩:用于描述数据的集中趋势、离散程度和分布形状,如方差(风险)、偏度(对称性)和峰度(尾部厚度)。