原点矩与中心矩

    原点矩    

原点矩(Raw Moment or Moment about the Origin)是关于随机变量的原点(零点)的矩。它直接反映了数据本身的分布特征,而不考虑均值的位置。常用的原点矩包括:

  • 一阶原点矩:即均值,表示数据的平均值。
  • 二阶原点矩:与方差相关,但不完全相同。它表示数据的平方的期望。
  • 三阶原点矩:用于计算数据的偏度。
  • 四阶原点矩:用于计算数据的峰度。

     中心矩    

中心矩(Central Moment)是关于随机变量的期望值(均值)为中心的矩。它反映了数据相对于其均值的分布特征。常用的中心矩包括:

  • 一阶中心矩:总是等于0,因为它是数据的均值。
  • 二阶中心矩:称为方差,衡量数据的离散程度。
  • 三阶中心矩:称为偏度,衡量数据分布的不对称性。
  • 四阶中心矩:称为峰度,衡量数据分布的陡峭程度。

举例说明

假设我们有一组数据:x1,x2,…,xn

实际应用

  • 原点矩:用于统计分析和概率计算,如均值和未中心化的矩,有助于理解数据的总体分布特征。
  • 中心矩用于描述数据的集中趋势、离散程度和分布形状,如方差(风险)、偏度(对称性)和峰度(尾部厚度)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值