LTI(复杂/连续)系统的零状态响应求解实例分析【拉普拉斯变换】

对于求解这类LTI系统零状态响应的题目,主要步骤如下:

  1. 建立频率响应函数:将给定的微分方程变换到频域,求解系统的传递函数 H(s) 。
  2. 输入信号的频域表示:将输入信号变换到频域,得到其拉普拉斯变换 X(s) 。
  3. 求解输出的频域表示:通过 Y ( s ) = H ( s ) ⋅ X ( s ) Y(s) = H(s) \cdot X(s) Y(s)=H(s)X(s) 计算输出信号在频域中的表示。
  4. 部分分式分解:对 Y(s) 进行部分分式分解,以便后续逆变换。
  5. 拉普拉斯逆变换:对分解后的结果进行拉普拉斯逆变换,得到系统的零状态响应 y Z S ( t ) y_{ZS}(t) yZS(t)

→ 题目

已知描述某LTI系统的微分方程为:
y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 3 x ′ ( t ) + 4 x ( t ) y''(t) + 3y'(t) + 2y(t) = 3x'(t) + 4x(t) y′′(t)+3y(t)+2y(t)=3x(t)+4x(t)

输入激励 x ( t ) = e − 3 t u ( t ) x(t) = e^{-3t}u(t) x(t)=e3tu(t),求系统的零状态响应 y Z S ( t ) y_{ZS}(t) yZS(t)

解答步骤

  1. 求系统的频率响应 H ( j ω ) H(j\omega) H()

    先将微分方程变换到频域(拉普拉斯变换),假设初始条件为零:
    ( s 2 + 3 s + 2 ) Y ( s ) = ( 3 s + 4 ) X ( s ) (s^2 + 3s + 2)Y(s) = (3s + 4)X(s) (s2+3s+2)Y(s)=(3s+4)X(s)

    系统的传递函数 H ( s ) H(s) H(s) 为:
    H ( s ) = Y ( s ) X ( s ) = 3 s + 4 s 2 + 3 s + 2 H(s) = \frac{Y(s)}{X(s)} = \frac{3s + 4}{s^2 + 3s + 2} H(s)=X(s)Y(s)=s2+3s+23s+4

    分母可以分解为:
    s 2 + 3 s + 2 = ( s + 1 ) ( s + 2 ) s^2 + 3s + 2 = (s + 1)(s + 2) s2+3s+2=(s+1)(s+2)

    所以,
    H ( s ) = 3 s + 4 ( s + 1 ) ( s + 2 ) H(s) = \frac{3s + 4}{(s + 1)(s + 2)} H(s)=(s+1)(s+2)3s+4

  2. 求输入的频域表示:

    输入 x ( t ) = e − 3 t u ( t ) x(t) = e^{-3t}u(t) x(t)=e3tu(t) 的拉普拉斯变换为:
    X ( s ) = 1 s + 3 X(s) = \frac{1}{s + 3} X(s)=s+31

  3. 求输出的频域表示:

    输出 Y ( s ) Y(s) Y(s) 为:
    Y ( s ) = H ( s ) ⋅ X ( s ) = 3 s + 4 ( s + 1 ) ( s + 2 ) ⋅ 1 s + 3 Y(s) = H(s) \cdot X(s) = \frac{3s + 4}{(s + 1)(s + 2)} \cdot \frac{1}{s + 3} Y(s)=H(s)X(s)=(s+1)(s+2)3s+4s+31

    简化后得到:
    Y ( s ) = 3 s + 4 ( s + 1 ) ( s + 2 ) ( s + 3 ) Y(s) = \frac{3s + 4}{(s + 1)(s + 2)(s + 3)} Y(s)=(s+1)(s+2)(s+3)3s+4

  4. 进行部分分式分解:

    3 s + 4 ( s + 1 ) ( s + 2 ) ( s + 3 ) = A s + 1 + B s + 2 + C s + 3 \frac{3s + 4}{(s + 1)(s + 2)(s + 3)} = \frac{A}{s + 1} + \frac{B}{s + 2} + \frac{C}{s + 3} (s+1)(s+2)(s+3)3s+4=s+1A+s+2B+s+3C

    通过求解 A A A B B B C C C

    3 s + 4 = A ( s + 2 ) ( s + 3 ) + B ( s + 1 ) ( s + 3 ) + C ( s + 1 ) ( s + 2 ) 3s + 4 = A(s + 2)(s + 3) + B(s + 1)(s + 3) + C(s + 1)(s + 2) 3s+4=A(s+2)(s+3)+B(s+1)(s+3)+C(s+1)(s+2)

    s = − 1 s = -1 s=1
    3 ( − 1 ) + 4 = A ( − 1 + 2 ) ( − 1 + 3 ) ⇒ 1 = 2 A ⇒ A = 1 2 3(-1) + 4 = A(-1 + 2)(-1 + 3) \Rightarrow 1 = 2A \Rightarrow A = \frac{1}{2} 3(1)+4=A(1+2)(1+3)1=2AA=21

    s = − 2 s = -2 s=2
    3 ( − 2 ) + 4 = B ( − 2 + 1 ) ( − 2 + 3 ) ⇒ − 2 = − B ⇒ B = 2 3(-2) + 4 = B(-2 + 1)(-2 + 3) \Rightarrow -2 = -B \Rightarrow B = 2 3(2)+4=B(2+1)(2+3)2=BB=2

    s = − 3 s = -3 s=3
    3 ( − 3 ) + 4 = C ( − 3 + 1 ) ( − 3 + 2 ) ⇒ − 5 = 2 C ⇒ C = − 5 2 3(-3) + 4 = C(-3 + 1)(-3 + 2) \Rightarrow -5 = 2C \Rightarrow C = -\frac{5}{2} 3(3)+4=C(3+1)(3+2)5=2CC=25

    所以,
    Y ( s ) = 1 2 s + 1 + 2 s + 2 − 5 2 s + 3 Y(s) = \frac{\frac{1}{2}}{s + 1} + \frac{2}{s + 2} - \frac{\frac{5}{2}}{s + 3} Y(s)=s+121+s+22s+325

  5. 进行拉普拉斯逆变换:

    y Z S ( t ) = 1 2 e − t u ( t ) + 2 e − 2 t u ( t ) − 5 2 e − 3 t u ( t ) y_{ZS}(t) = \frac{1}{2}e^{-t}u(t) + 2e^{-2t}u(t) - \frac{5}{2}e^{-3t}u(t) yZS(t)=21etu(t)+2e2tu(t)25e3tu(t)

因此,系统的零状态响应为:

y Z S ( t ) = [ 1 2 e − t + 2 e − 2 t − 5 2 e − 3 t ] u ( t ) y_{ZS}(t) = \left[\frac{1}{2}e^{-t} + 2e^{-2t} - \frac{5}{2}e^{-3t}\right]u(t) yZS(t)=[21et+2e2t25e3t]u(t)

  • 8
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值