LTI(复杂/离散)系统的零状态响应求解实例分析【离散傅里叶 or Z变换】

对于求解这类离散时间LTI系统零状态响应的题目,主要步骤如下:

  1. 建立频率响应函数:将差分方程变换到频域,求解系统的频率响应函数 H ( e j Ω ) H(e^{j\Omega}) H(ejΩ)
  2. 输入信号的频域表示:将输入信号变换到频域,得到其离散时间傅里叶变换(DTFT) X ( e j Ω ) X(e^{j\Omega}) X(ejΩ)
  3. 求解输出的频域表示:通过 Y Z S ( e j Ω ) = H ( e j Ω ) ⋅ X ( e j Ω ) Y_{ZS}(e^{j\Omega}) = H(e^{j\Omega}) \cdot X(e^{j\Omega}) YZS(ejΩ)=H(ejΩ)X(ejΩ) 计算输出信号在频域中的表示
  4. 部分分式分解:对 Y Z S ( e j Ω ) Y_{ZS}(e^{j\Omega}) YZS(ejΩ) 进行部分分式分解,以便后续逆变换。
  5. 离散时间傅里叶逆变换(IDTFT):对分解后的结果进行IDTFT,得到系统的零状态响应 y Z S [ k ] y_{ZS}[k] yZS[k]

→ 题目

已知描述某离散时间LTI系统的差分方程为:
y [ k ] − 0.75 y [ k − 1 ] + 0.125 y [ k − 2 ] = 4 x [ k ] + 3 x [ k − 1 ] y[k] - 0.75y[k-1] + 0.125y[k-2] = 4x[k] + 3x[k-1] y[k]0.75y[k1]+0.125y[k2]=4x[k]+3x[k1]

输入 x [ k ] = ( 0.75 ) k u [ k ] x[k] = (0.75)^k u[k] x[k]=(0.75)ku[k],求该系统的零状态响应 y Z S [ k ] y_{ZS}[k] yZS[k]

解答步骤

  1. 对差分方程两边进行DTFT:

    差分方程在频域表示为:
    ( 1 − 0.75 e − j Ω + 0.125 e − j 2 Ω ) Y Z S ( e j Ω ) = ( 4 + 3 e − j Ω ) X ( e j Ω ) (1 - 0.75e^{-j\Omega} + 0.125e^{-j2\Omega})Y_{ZS}(e^{j\Omega}) = (4 + 3e^{-j\Omega})X(e^{j\Omega}) (10.75ejΩ+0.125ej)YZS(ejΩ)=(4+3ejΩ)X(ejΩ)

  2. 根据离散系统频率响应的定义:

    H ( e j Ω ) = Y Z S ( e j Ω ) X ( e j Ω ) = 4 + 3 e − j Ω 1 − 0.75 e − j Ω + 0.125 e − j 2 Ω H(e^{j\Omega}) = \frac{Y_{ZS}(e^{j\Omega})}{X(e^{j\Omega})} = \frac{4 + 3e^{-j\Omega}}{1 - 0.75e^{-j\Omega} + 0.125e^{-j2\Omega}} H(ejΩ)=X(ejΩ)YZS(ejΩ)=10.75ejΩ+0.125ej4+3ejΩ

  3. 求输入的频域表示:

    输入 x [ k ] = ( 0.75 ) k u [ k ] x[k] = (0.75)^k u[k] x[k]=(0.75)ku[k] 的DTFT为:
    X ( e j Ω ) = ∑ k = 0 ∞ ( 0.75 ) k e − j Ω k = 1 1 − 0.75 e − j Ω X(e^{j\Omega}) = \sum_{k=0}^{\infty} (0.75)^k e^{-j\Omega k} = \frac{1}{1 - 0.75e^{-j\Omega}} X(ejΩ)=k=0(0.75)kejΩk=10.75ejΩ1

  4. 求系统输出的频域表示:

    Y Z S ( e j Ω ) = H ( e j Ω ) X ( e j Ω ) Y_{ZS}(e^{j\Omega}) = H(e^{j\Omega})X(e^{j\Omega}) YZS(ejΩ)=H(ejΩ)X(ejΩ)

    代入之前求得的表达式:
    Y Z S ( e j Ω ) = 4 + 3 e − j Ω 1 − 0.75 e − j Ω + 0.125 e − j 2 Ω ⋅ 1 1 − 0.75 e − j Ω Y_{ZS}(e^{j\Omega}) = \frac{4 + 3e^{-j\Omega}}{1 - 0.75e^{-j\Omega} + 0.125e^{-j2\Omega}} \cdot \frac{1}{1 - 0.75e^{-j\Omega}} YZS(ejΩ)=10.75ejΩ+0.125ej4+3ejΩ10.75ejΩ1

  5. 进行部分分式分解:

    4 + 3 e − j Ω ( 1 − 0.75 e − j Ω + 0.125 e − j 2 Ω ) ( 1 − 0.75 e − j Ω ) = 8 1 − 0.25 e − j Ω − 40 1 − 0.5 e − j Ω + 36 1 − 0.75 e − j Ω \frac{4 + 3e^{-j\Omega}}{(1 - 0.75e^{-j\Omega} + 0.125e^{-j2\Omega})(1 - 0.75e^{-j\Omega})} = \frac{8}{1 - 0.25e^{-j\Omega}} - \frac{40}{1 - 0.5e^{-j\Omega}} + \frac{36}{1 - 0.75e^{-j\Omega}} (10.75ejΩ+0.125ej)(10.75ejΩ)4+3ejΩ=10.25ejΩ810.5ejΩ40+10.75ejΩ36

  6. 进行IDTFT(逆离散时间傅里叶变换):

    y Z S [ k ] = 8 ( 0.25 ) k u [ k ] − 40 ( 0.5 ) k u [ k ] + 36 ( 0.75 ) k u [ k ] y_{ZS}[k] = 8(0.25)^k u[k] - 40(0.5)^k u[k] + 36(0.75)^k u[k] yZS[k]=8(0.25)ku[k]40(0.5)ku[k]+36(0.75)ku[k]

因此,系统的零状态响应为:

y Z S [ k ] = 8 ( 0.25 ) k u [ k ] − 40 ( 0.5 ) k u [ k ] + 36 ( 0.75 ) k u [ k ] y_{ZS}[k] = 8(0.25)^k u[k] - 40(0.5)^k u[k] + 36(0.75)^k u[k] yZS[k]=8(0.25)ku[k]40(0.5)ku[k]+36(0.75)ku[k]

使用Z变换来解决

这道题的求解过程包括以下几个步骤:

  1. 将差分方程转换为Z变换域:
    将差分方程 y [ k ] − 0.75 y [ k − 1 ] + 0.125 y [ k − 2 ] = 4 x [ k ] + 3 x [ k − 1 ] y[k] - 0.75y[k-1] + 0.125y[k-2] = 4x[k] + 3x[k-1] y[k]0.75y[k1]+0.125y[k2]=4x[k]+3x[k1]应用Z变换

  2. 求出系统的传递函数:
    通过Z变换,求出系统的传递函数 H ( z ) H(z) H(z)

  3. 求出零状态响应:
    利用输入信号 x [ k ] = ( 0.75 ) k u [ k ] x[k] = (0.75)^k u[k] x[k]=(0.75)ku[k]的Z变换,求解零状态响应 Y z s [ k ] Y_{zs}[k] Yzs[k]

具体步骤如下:

1. 差分方程

已知差分方程为:
y [ k ] − 0.75 y [ k − 1 ] + 0.125 y [ k − 2 ] = 4 x [ k ] + 3 x [ k − 1 ] y[k] - 0.75y[k-1] + 0.125y[k-2] = 4x[k] + 3x[k-1] y[k]0.75y[k1]+0.125y[k2]=4x[k]+3x[k1]

输入信号:
x [ k ] = ( 0.75 ) k u [ k ] x[k] = (0.75)^k u[k] x[k]=(0.75)ku[k]

2. 对差分方程进行Z变换

应用Z变换,并记住初始条件为零(零状态响应),可以得到:
Y ( z ) − 0.75 z − 1 Y ( z ) + 0.125 z − 2 Y ( z ) = 4 X ( z ) + 3 z − 1 X ( z ) Y(z) - 0.75z^{-1}Y(z) + 0.125z^{-2}Y(z) = 4X(z) + 3z^{-1}X(z) Y(z)0.75z1Y(z)+0.125z2Y(z)=4X(z)+3z1X(z)

3. 代入输入信号的Z变换

输入信号 x [ k ] = ( 0.75 ) k u [ k ] x[k] = (0.75)^k u[k] x[k]=(0.75)ku[k]的Z变换为:
X ( z ) = z z − 0.75 X(z) = \frac{z}{z - 0.75} X(z)=z0.75z

4. 求解系统传递函数

将X(z)代入差分方程的Z变换中:
Y ( z ) ( 1 − 0.75 z − 1 + 0.125 z − 2 ) = X ( z ) ( 4 + 3 z − 1 ) Y(z) \left(1 - 0.75z^{-1} + 0.125z^{-2}\right) = X(z) \left(4 + 3z^{-1}\right) Y(z)(10.75z1+0.125z2)=X(z)(4+3z1)

传递函数H(z)为:
H ( z ) = Y ( z ) X ( z ) = 4 + 3 z − 1 1 − 0.75 z − 1 + 0.125 z − 2 H(z) = \frac{Y(z)}{X(z)} = \frac{4 + 3z^{-1}}{1 - 0.75z^{-1} + 0.125z^{-2}} H(z)=X(z)Y(z)=10.75z1+0.125z24+3z1

将分母和分子同时乘以 z 2 z^2 z2以简化:
H ( z ) = 4 z + 3 z 2 − 0.75 z + 0.125 H(z) = \frac{4z + 3}{z^2 - 0.75z + 0.125} H(z)=z20.75z+0.1254z+3

5. 求零状态响应Y(z)

X ( z ) = z z − 0.75 X(z) = \frac{z}{z - 0.75} X(z)=z0.75z代入:
Y z s ( z ) = H ( z ) ⋅ X ( z ) = 4 z + 3 z 2 − 0.75 z + 0.125 ⋅ z z − 0.75 Y_{zs}(z) = H(z) \cdot X(z) = \frac{4z + 3}{z^2 - 0.75z + 0.125} \cdot \frac{z}{z - 0.75} Yzs(z)=H(z)X(z)=z20.75z+0.1254z+3z0.75z

简化得到:
Y z s ( z ) = 4 z 2 + 3 z ( z 2 − 0.75 z + 0.125 ) ( z − 0.75 ) Y_{zs}(z) = \frac{4z^2 + 3z}{(z^2 - 0.75z + 0.125)(z - 0.75)} Yzs(z)=(z20.75z+0.125)(z0.75)4z2+3z

6. 部分分式展开

Y z s ( z ) Y_{zs}(z) Yzs(z)部分分式展开:
Y z s ( z ) = A z − 0.25 + B z − 0.5 + C z − 1 Y_{zs}(z) = \frac{A}{z - 0.25} + \frac{B}{z - 0.5} + \frac{C}{z - 1} Yzs(z)=z0.25A+z0.5B+z1C

求解A, B, C的值并进行逆Z变换。计算得到:
A = 1 , B = 1.5 , C = − 1 A = 1, B = 1.5, C = -1 A=1,B=1.5,C=1

7. 逆Z变换求解时间域响应

通过Z逆变换得到零状态响应:
y z s [ k ] = A ( 0.25 ) k + B ( 0.5 ) k − C ( 1 ) k y_{zs}[k] = A (0.25)^k + B (0.5)^k - C (1)^k yzs[k]=A(0.25)k+B(0.5)kC(1)k

最终的零状态响应为:
y z s [ k ] = ( 0.25 ) k + 1.5 ( 0.5 ) k − ( 1 ) k y_{zs}[k] = (0.25)^k + 1.5 (0.5)^k - (1)^k yzs[k]=(0.25)k+1.5(0.5)k(1)k

至此,我们完整地利用Z变换求解了题目的零状态响应。

  • 22
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值