1.1 函数的概念、反函数(一一映射)、单调/奇偶/周期/有界/无界函数

一、 函数基础

  1. 函数两个基本要素? (定义域和对应法则)

  2. 两函数的复合条件? (外层函数的定义域和内层函数的值域的交集必须非空)

    *   示例:
*   y = f(u) = ln u,  u = g(x) = sin x - 1
*   不能复合,因为 Df = (0, +∞), Rg = [-2, 0],交集为空。

二、 反函数

  1. 判断某函数是否有反函数? (单调函数一定有反函数;但反函数不一定单调)

    *   示例:
*   y = x³ 有反函数,y = x² 没有反函数 (在整个定义域上)。
*   分段函数 f(x) = { x (0 ≤ x < 1), 3-x (1 ≤ x ≤ 2) } 有反函数,但不单调。

  2. 判断有反函数的充要条件? (定义域与值域之间是一一映射的)

  3. 图形属性?
    y = f(x) 和 y = f⁻¹(x) 的图形关于直线 y = x 对称。
    y = f(x) 和 x = f⁻¹(y) 是同一个函数。(图形重合)

    在这里插入图片描述

  4. 恒等映射?(利用该性质做题 常为考点)

    • f[f⁻¹(x)] = x
    • f⁻¹[f(x)] =x
      在这里插入图片描述
  5. 利用一元二次方程求解反函数 ?(掌握一元二次求根公式,此处舍去负数根)
    在这里插入图片描述

三、 初等函数

  1. “基本初等函数”有哪些? (幂函数、指数函数、对数函数、三角函数、反三角函数)

  2. 初等函数的定义?(一个由常数和基本初等函数通过有限次四则运算和复合运算得到的,并且可以用一个解析式表达的函数)

  3. 函数的性质? (单调性、奇偶性、周期性、有界性)

    • 奇偶性运算
      • 奇 + 奇 = 奇; 偶 + 偶 = 偶;
      • 奇 × 奇 = 偶; 偶 × 偶 = 偶; 奇 × 偶 = 奇;
  4. 如果奇函数 f(x) 在 x=0 处有定义,则 f(0) = 0。

  5. 证明奇函数 (示例)? (利用分子分母有理化、商的对数等于对数的差)
    在这里插入图片描述

四、周期函数与有界函数

  1. 常见的周期函数
  2. 关于周期函数的一个重要推论?
  • sin x, cos x 的周期为 2π; sin 2x, sin x 的周期为 π。
  • 若 f(x) 以 T 为周期,则 f(ax + b) 以 T/|a| 为周期。
  1. 常见的有界函数?

    • |sin x| ≤ 1
    • |cos x| ≤ 1
    • |arcsin x| ≤ π/2
    • |arctan x| < π/2
    • |arccos x| ≤ π
  2. 反三角函数导数公式? (表2)在这里插入图片描述

  3. 着重记忆常用的有界反三角函数:arctan x < π/2.在这里插入图片描述

  4. 证明是无界函数 (示例)? (通常代入特殊值,如 2nπ + π/2)
    在这里插入图片描述

五、常考题型

  1. 常考题型?

    • 函数的有界性、单调性、周期性及奇偶性的判定。
    • 复合函数的有界性、单调性、周期性及奇偶性的判定。
  2. 例题
    在这里插入图片描述
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值