一、 函数基础
-
函数两个基本要素? (定义域和对应法则)
-
两函数的复合条件? (外层函数的定义域和内层函数的值域的交集必须非空)
二、 反函数
-
判断某函数是否有反函数? (单调函数一定有反函数;但反函数不一定单调)
-
判断有反函数的充要条件? (定义域与值域之间是一一映射的)
-
图形属性?
y = f(x) 和 y = f⁻¹(x) 的图形关于直线 y = x 对称。
y = f(x) 和 x = f⁻¹(y) 是同一个函数。(图形重合)
-
恒等映射?(利用该性质做题 常为考点)
- f[f⁻¹(x)] = x
- f⁻¹[f(x)] =x
-
利用一元二次方程求解反函数 ?(掌握一元二次求根公式,此处舍去负数根)
三、 初等函数
-
“基本初等函数”有哪些? (幂函数、指数函数、对数函数、三角函数、反三角函数)
-
初等函数的定义?(一个由常数和基本初等函数通过有限次四则运算和复合运算得到的,并且可以用一个解析式表达的函数)
-
函数的性质? (单调性、奇偶性、周期性、有界性)
- 奇偶性运算
- 奇 + 奇 = 奇; 偶 + 偶 = 偶;
- 奇 × 奇 = 偶; 偶 × 偶 = 偶; 奇 × 偶 = 奇;
- 奇偶性运算
-
如果奇函数 f(x) 在 x=0 处有定义,则 f(0) = 0。
-
证明奇函数 (示例)? (利用分子分母有理化、商的对数等于对数的差)
四、周期函数与有界函数
- 常见的周期函数?
- 关于周期函数的一个重要推论?
- sin x, cos x 的周期为 2π; sin 2x, sin x 的周期为 π。
- 若 f(x) 以 T 为周期,则 f(ax + b) 以 T/|a| 为周期。
-
常见的有界函数?
- |sin x| ≤ 1
- |cos x| ≤ 1
- |arcsin x| ≤ π/2
- |arctan x| < π/2
- |arccos x| ≤ π
-
反三角函数导数公式? (表2)
-
着重记忆常用的有界反三角函数:arctan x < π/2.
-
证明是无界函数 (示例)? (通常代入特殊值,如 2nπ + π/2)
五、常考题型
-
常考题型?
- 函数的有界性、单调性、周期性及奇偶性的判定。
- 复合函数的有界性、单调性、周期性及奇偶性的判定。
-
例题