1.命题逻辑的基本概念
1.1 命题与连接词
1.1.1命题
非真即假的陈述句
1.1.2真值
命题的判断结果
-
一个命题如果是对的或正确的,则称为真命题,其真值为“真(ture),常用T或1表示;一个命题如果是错的或不正确的,则称为假命题,其真值为“假”(false),常用F或0表示
-
任何命题的真值都是唯一的
例:
1.1.3命题变元(命题变项)
通常用小写英文字母p,q,r,...或带有下标的小写字母P₁,p₂,p₃,...来表示命题,称为命题变元或命题变项
1.命题变项与命题的区别:
- 命题有具体的含意和确定的真值
- 命题变项只有明确表示某个命题时才有具体的含意和确定的真值
2.命题变项一般只表示一个抽象的命题,其真值可能是T也可能是F,但通常也简称命题变项为命题
3.不能再分解的命题称为简单命题或原子命题,一般形式是“......是......”。由原子命题组合而成的命题称为复合命题
例:
- ∏和e都是无理数
- 6和8至少有一个是合数
- 说刘老师讲课不好是不正确的
- 不下雨我就去买书。
1.1.4命题联结词(命题运算符)
将命题连接起来的方式叫做命题联结词或命题运算符
1.设p为命题,否定词“¬”是一元联结词
- ¬p读作"非p"或“p的否定"
- 若p的真值为真,则¬p的真值为假;反之,若p为假,则¬p为真
- 否定联结词的含意相当干自然语言中的“不”、“没有”、无”、“否定”,“井非”“取反"等
2.设p,q为命题,合取词"∧"是二元联结词
- p∧q读作“p与q”或“p,q的合取"
- 当且仅当p,q的真值均为真时,p∧q的真值为真
- 合取联结词的含意相当于自然语言中的“p和q”、“p与q、“p且q、“p,同时q、“p并且q“p以及q、“p而且q”、“既p,又q、“不但p,而且q”、“尽管p,依然q”、“虽然p,但是q”等
3.设p,q为命题,析取词"∨"是二元联结词
- pVq读作"p或q”或“p,q的析取"
- 当且仅当p,q的真值均为假时,pVq的真值为假
- 析取联结词的含意相当于自然语言中的“p或者q",“要么p,要么q”,“不是p就是q”等。
4.设p,q为命题,异或词"p⊕q”是二元联结词
- p⊕q读作“p异或q
- 当且仅当p,q的真值相同时,p⊕q的真值为假
- “异或“也称“不可兼或"
5.设p.q为命题,蕴涵词“→"是二元联结词
- p→q读作“若p则q"
- 当且仅当p的真值为真、q的真值为假时,p→q的真值为假
- p称作前提,q称作结论
- 蕴联结词的含意相当于自然语言中的“如果p则q"、“因为p,所以q、“只要p,就q"、“只有q,才p、“仅当q,则p","p是q的充分条件”、“q是p的必要条件"“既然p那么q"等
6.设p,q为命题,等价词"<=>"是二元联结词
- p<=>q读作“p当且仅当q”或“p,q等价
- 当且仅当p.q的真值相同时,p<=>q的真值为真
- “等价“也称作双条件.
- 等价联结词的含意相当于自然语言中的"p,当且仅当q”“p是q的充分必要条件”、“p,q含义相同”等。
1.1.5命题公式及其分类
复合命题是由命题变项、逻辑联结词和括号等符号组成的符号串;但反过来,由这些符号组成的符号串并不一定都是命题
设A为命题公式,B为A中的一个连续的符号串,且B为命题公式,则称B为A的子公式
命题公式不是命题,只有当公式中的每一个命题变项都被赋以确定的真值时,公式的真值才被确定,从而成为一个命题
- 重言式一定是可满足式,但反之不真
- 任意两个重言式的析取或合取仍然是重言式
- 任意两个矛盾式的析取或合取仍然是矛盾式
1.1.6真值表
一个命题公式在每种真值指派(每种命题变项取值的组合)上的值可以直观地用真值表来计算和表示
为方便构造真值表,特约定如下:
(1)命题变项按字典序排列
(2)对每个真值指派,以二进制数从小到大或从大到小顺序列出
(3)若公式较复杂,可先列出各子公式的真值,最后列出所求公式的真值
p | q | ¬p | p∧q | pVq | p⊕q | p→q | p<=>q |
T | T | F | T | T | F | T | T |
T | F | F | F | T | T | F | F |
F | T | T | F | T | T | T | F |
F | F | T | F | F | F | T | T |
1.1.7命题的符号化
把一个用自然语言表述的命题表示为由命题公式的形式,称为命题的符号化,这是进行推理演算的首要步骤。命题的符号化一般经过如下三个步骤:
-
找出各原子命题,将原子命题符号化
-
找出命题中各联结词,将联结词符号化
-
将原子命题和联结词组成一个复合命题
2.命题逻辑等值演算
2.1等值式
1.设A,B为两个命题公式,若A<=>B为一个重言式,则称A与B等值或逻辑等价,记作A ≡B,称A≡B为等值式
2.判断两个命题公式是否等值主要有两种方法
-
真值表法:将两个公式的真值表列出,判断输出列是否相同
-
等值演算法:由已知的等值式推演出新的等值式
3.等值演算不能直接证明两个公式不等值。证明两个公式不等值的基本思想是找到一个真值指派使一个成真,另一个成假
4.例 p∨(p∧q)≡p
p |
q |
p∧q |
T </ |