【每日一练】图解: 数组中的逆序对
题目: 数组中的逆序对
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P mod 1000000007
要求:空间复杂度 O(n),时间复杂度 O(nlogn)
输入描述:题目保证输入的数组中没有的相同的数字
示例
- 示例1
- 示例2
初始代码
public class Solution {
public int InversePairs(int [] array) {
}
}
思路
这道题可以用暴力法直接比较,但是明显不满足题目对时间复杂度的要求。
我们从题目要求的时间复杂度中看到logn,则应该敏感,logn说明应该使用分治法。
那么如何分治呢?
我们要找的是逆序对的数量。分治,一般和递归/循环相联系,说明应该分到一个阶段,这里我们要找逆序对,则首先想到应该把数组两两切分到最小(只包含一个元素),然后数组之间进行比较,这样就可以获得逆序对的个数。
如何比较呢?数组之间应该是互相比较?分别比较?
从分治的一般思路来看,我们对一个整体进行切分之后,要做一些什么事情,得到结果,然后再把这些分割的部分重新整合起来,同时整合结果,最终回到一个整体,并得到一个最终结果,即我们想要的答案。
所以思考:将数组两两分到最小之后,应该进行两两比较,记录逆序数。
记录逆序数之后,这两个数组应该进行合并。
再思考:如何合并?
直接合并:好像分治并没有什么作用~
可否排序?对已经比较过的数组在合并的同时排序(归并排序)
可!