【每日一练】图解: 数组中的逆序对

【每日一练】图解: 数组中的逆序对

题目: 数组中的逆序对

题目来源牛客 - 链接在此

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P mod 1000000007

要求:空间复杂度 O(n),时间复杂度 O(nlogn)
输入描述:题目保证输入的数组中没有的相同的数字
在这里插入图片描述

示例

  • 示例1
    在这里插入图片描述
  • 示例2
    在这里插入图片描述

初始代码

public class Solution {
   
    public int InversePairs(int [] array) {
   
        
    }
}

思路

这道题可以用暴力法直接比较,但是明显不满足题目对时间复杂度的要求。
我们从题目要求的时间复杂度中看到logn,则应该敏感,logn说明应该使用分治法。

那么如何分治呢?
我们要找的是逆序对的数量。分治,一般和递归/循环相联系,说明应该分到一个阶段,这里我们要找逆序对,则首先想到应该把数组两两切分到最小(只包含一个元素),然后数组之间进行比较,这样就可以获得逆序对的个数。
在这里插入图片描述

如何比较呢?数组之间应该是互相比较?分别比较?
从分治的一般思路来看,我们对一个整体进行切分之后,要做一些什么事情,得到结果,然后再把这些分割的部分重新整合起来,同时整合结果,最终回到一个整体,并得到一个最终结果,即我们想要的答案。

所以思考:将数组两两分到最小之后,应该进行两两比较,记录逆序数。
在这里插入图片描述
记录逆序数之后,这两个数组应该进行合并。

再思考:如何合并?
直接合并:好像分治并没有什么作用~
在这里插入图片描述
可否排序?对已经比较过的数组在合并的同时排序(归并排序)
可!

  • 10
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值