PyTorch
文章平均质量分 94
深度学习使用的框架,目前包含B站上我是土堆的视频教程笔记。
竹清兰香
山中习静观朝槿,松下清斋折露葵。
展开
-
PyTorch(七)总结
本篇文章是对之前课程学习内容的总结。原创 2022-12-12 09:51:49 · 467 阅读 · 1 评论 -
PyTorch(六)网络模型
本篇文章介绍了如何对已有的模型进行修改或者添加自己想要的结构,保存的读取网络模型的方法,利用 GPU 进行训练,以及完整的模型训练和验证的套路。原创 2022-12-12 08:38:45 · 2067 阅读 · 2 评论 -
PyTorch(五)神经网络基础
本篇文章主要介绍了torch.nn 中有关神经网络的相关内容。在容器中介绍了 Module,它是所有神经网络的一个基本的类;同时还介绍了 Sequential,它的作用是整合不同的操作;在卷积层中介绍了 Conv2d 类;在池化层中介绍了 MaxPool2d 下采样,它的作用就是降低数据的维度;在非线性激活中介绍了激活函数的使用;在线性层中介绍了 Linear,作用是进行线性变换;在损失函数中介绍了三种损失函数的使用方法;最后还介绍了优化器,它的利用梯度对参数进行调整,进而实现误差降低的目的。原创 2022-12-11 14:38:40 · 566 阅读 · 0 评论 -
PyTorch(四)Torchvision 与 Transforms
本文主要介绍了 Torchvision 中数据集的使用方法,以及如何结合 Transforms 进行使用原创 2022-11-29 09:41:40 · 843 阅读 · 0 评论 -
PyTorch(三)TensorBoard 与 Transforms
本文主要介绍了 TensorBoard 的安装以及其中的 SummaryWriter 的使用,包括函数 add_scalar() 以及 add_image() 的使用方法,同时还介绍了 Transforms 的结构及用法,以及诸如 ToTensor、Normalize、 Resize、 Compose、 RandomCrop 等的常用的函数的用法。原创 2022-10-24 07:41:57 · 949 阅读 · 0 评论 -
PyTorch(二)Dataset 与 DataLoader
本文主要介绍了 Pytorch 中 Dataset 和 DataLoader 两个类的区别以及使用方法。原创 2022-10-03 15:31:59 · 1591 阅读 · 0 评论 -
PyTorch(一)安装与环境配置
本篇文章主要介绍了在使用 PyTorch 之前需要进行的准备工作,包括 conda 和 CUDA 的安装,以及用到的编译器及其各自的特点等内容。原创 2022-08-30 19:24:42 · 1615 阅读 · 0 评论