对于求最小生成树的问题大多都可以用这两种算法解决。
朴素prime算法:
算法思路:
循环n次,每次取出距离生成树距离最小者,加入生成树,用其更新其他的点
代码实现:
const int N = 1e5+10, INF = 0x3f3f3f3f;
bool st[N];//是否在生成树中
int dist[N];//到生成树的距离(距离生成树中点的距离最小者)
int g[N][N];//邻接矩阵存边
//不存在则返回无穷
int prime()
{
memset(dist, 0x3f, sizeof dist);
int res = 0;//储存边权和
for(int i = 0; i < n; i++)
{
int t = -1;//储存到生成树距离最小者的编号
for(int j = 1; j <= n; j++)
{
if(!st[j] && (t == -1 || dist[j] < dist[t])) t = j;
}
if(i && dist[t] == INF) return INF;
if(i) res += dist[i];
st[t] = true;
for(int j = 1; j <= n; j++)
dist[j] = min(dist[j], g[t][j]);
}
return res;
}
Kruskal算法:
算法思路:
每个点各为一个集合,将所有边进行排序,遍历所有边,如果边的起点和终点不在同一集合中,则合并它们,更新最小生成树
代码实现:
int n, m;//点数和边数
int p[N];//并查集
struct Edge
{
int a, b, w;
bool operater <(const Edge &W) const
{
return w < W.w;
}
}edges[M];
void Find(int x)//返回x的祖宗节点
{
if(x != p[x]) p[x] = Find(p[x]);
return p[x];
}
int kruskal()
{
for(int i = 1; i <= n; i++) p[i] = i;
sort(edges, edges + m);
int res = 0;//储存边权和
int cnt = 0;//储存边数
for(int i = 0; i < m; i++)
{
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
int pa = Find(a), pb = Find(b);
if(pa != pb)
{
//合并集合,更新生成树
p[pa] = pb;
res += w;
cnt++;
}
}
if(cnt < n-1) return INF;
return res;
}