求最小生成树

本文深入探讨了两种经典图论算法——Prim和Kruskal,用于解决寻找图中最小生成树的问题。通过详细阐述算法思想,并提供C++代码实现,帮助读者理解如何在邻接矩阵中应用这两种算法找到连接所有顶点的最小边权和。
摘要由CSDN通过智能技术生成

在这里插入图片描述
对于求最小生成树的问题大多都可以用这两种算法解决。

朴素prime算法:

算法思路:
循环n次,每次取出距离生成树距离最小者,加入生成树,用其更新其他的点
代码实现:

const int N = 1e5+10, INF = 0x3f3f3f3f;
bool st[N];//是否在生成树中
int dist[N];//到生成树的距离(距离生成树中点的距离最小者)
int g[N][N];//邻接矩阵存边

//不存在则返回无穷
int prime()
{
	memset(dist, 0x3f, sizeof dist);
	int res = 0;//储存边权和
	for(int i = 0; i < n; i++)
	{
		int t = -1;//储存到生成树距离最小者的编号
		for(int j = 1; j <= n; j++)
		{
			if(!st[j] && (t == -1 || dist[j] < dist[t])) t = j;
		}
		
		if(i && dist[t] == INF) return INF;
		if(i) res += dist[i];
		st[t] = true;

		for(int j = 1; j <= n; j++)
			dist[j] = min(dist[j], g[t][j]);
	}

	return res;
}

Kruskal算法:

算法思路:
每个点各为一个集合,将所有边进行排序,遍历所有边,如果边的起点和终点不在同一集合中,则合并它们,更新最小生成树
代码实现:

int n, m;//点数和边数
int p[N];//并查集

struct Edge
{
	int a, b, w;
	bool operater <(const Edge &W) const
	{
		return w < W.w;
	}
}edges[M];

void Find(int x)//返回x的祖宗节点
{
	if(x != p[x]) p[x] = Find(p[x]);
	return p[x];
}
int kruskal()
{

	for(int i = 1; i <= n; i++) p[i] = i;
	
	sort(edges, edges + m);
	int res = 0;//储存边权和
	int cnt  = 0;//储存边数
	for(int i = 0; i < m; i++)
	{
		int a = edges[i].a, b = edges[i].b, w = edges[i].w;
		int pa = Find(a), pb = Find(b);
		if(pa != pb)
		{
			//合并集合,更新生成树
			
			p[pa] = pb;
			res += w;
			cnt++;
		}
	}
	if(cnt < n-1) return INF;
	return res;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值