方法一:排序 + 双指针
「不重复」的本质是什么?我们保持三重循环的大框架不变,只需要保证:
第二重循环枚举到的元素不小于当前第一重循环枚举到的元素;
第三重循环枚举到的元素不小于当前第二重循环枚举到的元素
这种方法的时间复杂度仍然为 O(N^3),毕竟我们还是没有跳出三重循环的大框架。然而它是很容易继续优化的,可以发现,如果我们固定了前两重循环枚举到的元素 a和 b,那么只有唯一的 c 满足 a+b+c=0。当第二重循环往后枚举一个元素 b’时,由于 b′>b,那么满足 a+b’+c’=0的 c’ 一定有c ′ <c,即 c’在数组中一定出现在 c的左侧。也就是说,我们可以从小到大枚举 b,同时从大到小枚举 c,即第二重循环和第三重循环实际上是并列的关系。
有了这样的发现,我们就可以保持第二重循环不变,而将第三重循环变成一个从数组最右端开始向左移动的指针,
这个方法就是我们常说的「双指针」,当我们需要枚举数组中的两个元素时,如果我们发现随着第一个元素的递增,第二个元素是递减的,那么就可以使用双指针的方法,将枚举的时间复杂度从 O(N^2) 减少至 O(N)。为什么是 O(N) 呢?这是因为在枚举的过程每一步中,「左指针」会向右移动一个位置(也就是题目中的 b),而「右指针」会向左移动若干个位置,这个与数组的元素有关,但我们知道它一共会移动的位置数为 O(N),均摊下来,每次也向左移动一个位置,因此时间复杂度为 O(N)。
注意到我们的伪代码中还有第一重循环,时间复杂度为 O(N),因此枚举的总时间复杂度为 O(N^ 2)。由于排序的时间复杂度为 O(NlogN),在渐进意义下小于前者,因此算法的总时间复杂度为 O(N^2)。
上述的伪代码中还有一些细节需要补充,例如我们需要保持左指针一直在右指针的左侧(即满足 b ≤c),具体可以参考下面的代码,均给出了详细的注释。
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
int n = nums.length;
//非常重要,要排序
Arrays.sort(nums);
List<List<Integer>> ans = new ArrayList<List<Integer>>();
for(int first = 0; first < n; ++first){
if(first > 0 && nums[first] == nums[first - 1]){
continue;
}
int third = n - 1;
int target = -nums[first];
for(int second = first + 1; second < n; ++second){
if(second > first + 1 && nums[second] == nums[second - 1]){
continue;
}
while(second < third && nums[second] + nums[third] > target){
--third;
}
if(second == third){
break;
}
if(nums[second] + nums[third] == target){
List<Integer> list = new ArrayList<Integer>();
list.add(nums[first]);
list.add(nums[second]);
list.add(nums[third]);
ans.add(list);
}
}
}
return ans;
}
}
复杂度分析
时间复杂度:O(N^2),其中 N 是数组nums 的长度。
空间复杂度:O(logN)。我们忽略存储答案的空间,额外的排序的空间复杂度为 O(logN)。然而我们修改了输入的数组nums,在实际情况下不一定允许,因此也可以看成使用了一个额外的数组存储了nums 的副本并进行排序,空间复杂度为O(N)。