前言
在如今的软件开发中,限流是确保系统稳定性和高可用性的关键手段之一。它可以帮助我们控制并发请求的数量,避免因为过多的请求导致系统过载,进而引发性能下降、服务崩溃等问题。特别是在微服务架构中,限流的作用更加凸显,因为服务之间的调用可能形成一个复杂的网络,任何一环的过载都可能对整个系统造成严重影响。
Spring Boot,作为Java领域最流行的轻量级框架,为我们提供了快速构建生产级应用的能力。在Spring Boot中,我们可以利用强大的AOP(面向切面编程)功能,结合自定义注解,实现灵活且高效的限流策略。
本文将详细介绍如何使用Spring Boot结合自定义注解来实现限流功能。我们将从限流的基本概念入手,阐述为何需要限流以及限流的核心思想。接着,我们将深入探讨如何在Spring Boot中创建自定义注解,并结合AOP来拦截和处理带有该注解的方法调用。最后,我们将通过一个实际案例来演示如何实现一个简单的限流器,并展示其在实际应用中的效果。
引入依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-aop</artifactId>
</dependency>
自定义注解的话就肯定需要使用到切面了,所以需要引入aop,然后又是通过redis来限流,所以还需要引入redis
创建AccessLimit注解文件
/**
* @title: AccessLimit
* @description: 限流注解
*/
@Documented
@Target(ElementType.METHOD)//注解放置的目标位置即方法级别
@Retention(RetentionPolicy.RUNTIME)//注解在哪个阶段执行
public @interface AccessLimit {
/**
* 在时间窗内的限流次数
* @return
*/
public int count() default 10;
/**
* 限流时间窗
* @return
*/
public int time() default 10;
public boolean pass() default false; // 超过限流次数是否也放行
}
创建Aop切面类
/**
* @title: AccessLimitAspect
* @description: 限流切面类
*/
@Aspect
@Component
@RequiredArgsConstructor
public class AccessLimitAspect {
private static final Logger logger = LoggerFactory.getLogger(AccessLimitAspect.class);
private final RedisTemplate redisTemplate;
@Before("@annotation(accessLimit)")
public void doBefore(JoinPoint joinPoint, AccessLimit accessLimit) throws Throwable {
int time = accessLimit.time();
HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.currentRequestAttributes()).getRequest();
// 拼接redis key = IP + Api限流
String key = IpUtil.getIp(request) + request.getRequestURI();
// 获取redis的value
Integer maxTimes = null;
Object value = redisTemplate.opsForValue().get(key);
if (value != null) {
maxTimes = (Integer) value;
}
if (maxTimes == null) {
// 如果redis中没有该ip对应的时间则表示第一次调用,保存key到redis
redisTemplate.opsForValue().set(key, 1, time, TimeUnit.SECONDS);
} else if (maxTimes < accessLimit.count()) {
// 如果redis中的时间比注解上的时间小则表示可以允许访问,这是修改redis的value时间
redisTemplate.opsForValue().set(key, maxTimes + 1, time, TimeUnit.SECONDS);
} else {
// 请求过于频繁
logger.info("API请求限流拦截启动,{} 请求过于频繁", key);
throw new BusinessException("请求过于频繁,稍后重试");
}
}
}
使用注解
@AccessLimit
@GetMapping(value = "collect")
public ResponseResult collect(Integer articleId, HttpServletRequest request) {
return apiCollectService.collect(articleId,request);
}
在需要进行限流的方法上加上AcessLimit注解,当然后面也是可以配置参数的,我这里是用的默认,所以没有加,如果需要配置的话可以参考下面这个
@AccessLimit(count = 15,time = 20)
完结
通过本文的探讨和实践,我们详细展示了如何使用Spring Boot结合自定义注解来实现限流功能。自定义注解的引入使得限流策略可以更加灵活和精确地应用到我们的业务代码中,而Spring Boot的AOP功能则为我们提供了强大的拦截和处理能力。
在实际应用中,限流策略往往需要根据业务场景和需求进行定制化调整。例如,我们可以根据请求的来源、接口的重要性、系统的负载情况等因素来动态调整限流阈值。此外,还可以结合其他技术手段,如熔断、降级等,来构建更加完善的系统保护机制。
需要指出的是,限流虽然是一种有效的系统保护手段,但并非万能药。在设计和实施限流策略时,我们需要充分考虑系统的整体架构和性能特点,避免因为不当的限流操作而引发新的问题。同时,我们还需要不断监控和评估限流策略的效果,根据反馈及时调整和优化。
总之,通过Spring Boot实现自定义注解限流是一种高效且灵活的方法,它可以帮助我们更好地控制系统的并发请求数量,确保系统的稳定性和可用性。希望本文能够对你有所启发和帮助,在未来的开发中能够灵活运用这一技术,为构建更加健壮和高效的软件系统贡献力量。