最近系统地学习了随机过程,对随机过程的定义和概念有了更清楚的认识,现在重新回过头来年我两年前写的这篇博客,很遗憾,我知道我的答案有问题,先保持之前的证明过程不变,我们在文章后半部分加入新的证明,并在文章的末尾讨论这两种方法在定义上的合理性。
原博客证明方法
补充:伽马函数。
如果有错误,请各位大佬不吝指正!非常感谢!
现在的证明方法
题目描述
现有一随机过程,其中
,
为一时间变量,其余均为定常数,任意两个时刻之间的。试问:该随机过程是否是狭义上的平稳过程?是否是广义上的平稳过程?
狭义平稳讨论
狭义平稳定义为,在概率密度函数已知的情况下,该函数的一阶概率密度函数与时间变量无关,任意有限维概率密度函数与时间起始点无关,仅与时间的间隔有关(这一特性被称为时不变性),即有:
满足以上两条准则(实际上只有一条)的随机过程称为严平稳过程,实际上第二条包含了第一条,但是如果要证伪,只需要说明第一条不成立就足够了,本题就使用到了这样的思路。为了便于后续分析,记:
证明:严平稳不成立
根据概率分布函数的定义,随机过程在时刻的概率分布函数可表示为:
而随机变量的概率分布函数为:
根据的取值关系,对上式讨论得到以下分段概率分布:
再根据概率分布密度函数的定义,可求得一阶概率分布密度函数:
进一步可写得:
可见,该函数内含有时间项,且时间项并不具有平移不变性,因此该随机过程的一维概率密度函数不具有时不变性,该随机过程不是严平稳随机过程。
广义平稳讨论
广义平稳使用均值和自相关函数两个数字特征作为平稳性的定义,削弱了约束条件,定义均值为常数且自相关函数具有时不变性的二阶矩过程为广义平稳随机过程,又称宽平稳过程,即有:
证明:宽平稳不成立
根据定义,求解上述随机过程的均值,即有:
可见均值并不是常数,因此定义的第一个条件不满足,该过程不是宽平稳随机过程,自相关函数就不再证明了。
评论
两年前,我的方法很明显是弄混了平稳过程和各态遍历过程的定义,证明的思路是各态遍历的定义,而一个随机过程如果连平稳性都不能满足,就没有必要讨论其各态遍历性了,这也是当时的证明错误之处,虽然结果是对的。