Matlab改进遗传算法求解VRPTW问题(基于改进遗传算法的生鲜配送路径优化)

1.研究背景

随着我国生鲜农产品市场的蓬勃发展,对产品的需求量和品质要求都在持续上升。然而,在这一过程中,我们也逐渐发现农副产品流通中的一些问题,特别是物流基础设施和信息化程度的不足。生鲜农副产品种类繁多,保鲜需求各异,储存时间短,且消费者需求分布广泛,路径网络错综复杂,这使得物流配送路径的优化变得尤为重要。

随着消费者对生鲜农副产品选择性、新鲜度等品质要求的提升,对配送时间的要求也愈发严格,这无疑为路径优化带来了新的挑战。配送作为生鲜农产品流通中的关键环节,其路径设计的科学性和合理性对消费者体验、企业经济效益以及社会影响都起着决定性作用。

因此,优化配送车辆路径不仅能提高配送效率,降低配送成本,确保产品准时送达,提升消费者满意度和企业经济效益,还能减少车辆使用,缓解城市拥堵,降低汽车噪声和尾气排放,从而实现对生态环境的保护。

生鲜农产品配送车辆路径优化(VRP)问题属于带时间窗的车辆路径(VRPTW)问题,该问题是由Pullen等[1](1967),Knight等[2](1968)考虑提供服务间隔时间约束时提出的。我国对该类问题的研究主要集中在模型构建和求解方法两个方向。2014年,杨磊等以顾客满意度为目标函数,以客户的时间要求为约束条件,建立带时间窗口的鲜活农产品配送模型进行配送车辆路径优化

研究[3]。2016年,葛显龙等考虑路程等因素,以物流企业的最小成本(车辆成本和货损成本)为目标函数,建立了带时间窗口约束的优化模型,并给出最优车辆路径[4]。2017年,朱莉等以最短车辆运行时间为最优目标提出了一种带时间窗口的紧急救援路线优化模型,解决了带时间窗的跨区救援线路优化问题[5]。2019年,冀巨海等以配送成本最小为目标函数,建立了基于软硬时间窗口限制和取送两种方式相结合的配送车辆路径优化模型[6]。2017年,郭咏梅等针对突发事件中的应急物流VRPTW问题,提出一种蚂蚁算法和人工鱼群算法相结合的混合算法[7]。2018年,邓红星等构建了公路零担物流配送路径优化模型,并提出置换算法求解得出最优方案[8]。2020年,赵志学把交通拥堵情况引入VRPTW数学问题,构建了配送车辆路径优化的数学模型,并采用GA进行问题求解。2022年,王阔和郝福珍以配送总路程最短为目标构建VRPTW问题的约束模型,用改进后的PGSA算法,达到更好的求解结果[9]。2023年,李建华等依据生鲜农产品物流的构成,引入Milk-Run循环取货模式,综合考虑装载率、出车数量、疲劳驾驶、客户时间等因素构建多目标VRPTW模型,通过仿真实验证明了所提出的方法可以为企业的物流决策提供参考[10]。

生鲜农产品配送车辆路径优化(VRP)问题,尤其是带时间窗的车辆路径(VRPTW)问题,是物流领域中的一个热点研究方向。我国学者在生鲜农产品配送车辆路径优化问题上取得了显著的进展。这些研究不仅关注了基本的路径优化问题,还逐渐将实际问题中的复杂因素纳入考虑,如客户的时间要求、物流成本、运输时间、交通拥堵等。在求解方法上,学者们也进行了多种尝试和创新。从早期的数学模型和仿真实验,到近年来的智能算法,如蚂蚁算法、置换算法、GA和PGSA算法等,这些算法在求解VRPTW问题上展现出了良好的性能。特别是近年来,随着大数据、人工智能等技术的快速发展,生鲜农产品配送车辆路径优化问题的研究也迎来了新的机遇。

2.模型

以生鲜农产品配送路径优化为研究对象,以配送路径最短构造优化模型,寻找最优配送方案。

2.1 模型假设

(1)假设存在一个配送中心和多个客户,配送车辆充足;(2)配送车辆匀速行驶且燃料充足,无故障;(3)配送中心货物充足,能满足多个客户需求;(4)所有货品运输储存温度一致;(5)车辆的载重量相同;(6)车辆服务完最后一个顾客后返回配送中心。

2.2 符号定义

A:表示客户节点数量,A={0,1,2,...A},0表示配送中心;

K:配送中心车辆数量;

Q:配送中心车辆的容量;

ti:到达第i个客户点的时间;

wi:第i个客户点的等待时间;

dij:第i个客户点与第j个客户点的距离;

qi:第i个客户点的需求量;

Fi:第i个客户点的服务时间;

Ei:第i个客户点的最早服务时间;

Li:第i个客户点的最晚服务时间;

Tk:第k辆车的最大行驶时间。

2.3 决策变量

2.4 目标函数

根据符号定义及决策变量,运输车辆路径最短的目标函数可以表述为:

2.5 约束条件

(1)配送中心车辆数量约束:

(2)车辆配送完成后返回配送中心:

(3)每个客户点都被一辆车服务一次:

(4)每辆车的容量约束:

(5)车辆最大行驶时间约束:

(6)客户服务时间约束:

3.遗传算法

3.1 标准遗传算法

3.1.1 编码

染色体编码是利用遗传算法求解问题时首先需要考虑的部分,编码的好坏直接影响计算的复杂度和各算子的性能。利用遗传算法求解车辆路径问题时通常采用自然数编码。在需进行配送的客户点数量为n,问题最大可使用车辆数为k时,设定染色体的长度为n+k-1,染色体表达形式即为(1,2,…n,n+1,……,n+k-2,n+k-1)。

3.1.2 适应度函数

本模型适应度函数是求取车辆路径最短,由于存在容量约束和时间窗约束,因此增加惩罚函数来进行求解:

f(s)=c(s)+αq(s)+βw(s)

式中,c(s)表示原本的目标函数,q(s)表示当前解违反容量约束之和,w(s)表示当前解违反时间窗约束之和。α、β为常数系数,因容量约束比较容易满足而满足时间窗约束较为困难,设定α为一较小常数,β为一比较大的常数。带时间窗的车辆路径问题要求求解满足约束条件下的最短路程,因此f(s)的解越小,适应度越高。

3.1.3 构造初始种群

遗传算法的一系列操作都是基于种群进行的,因此在进行遗传操作前需根据问题构造初始解。本文的操作为:在客户点集合中随机选出一客户点i作为路径上的第一站,按照顺序依次判断客户点i+1、i+2、…、n、1、2、…、i-1,将集合中的点全部添加至路径。具体判断方法为:

确定该点是否满足当前路径的容量约束,如果满足则将该点添加至路径,不满足则保存当前路径并更新一条新路径将该点作为新路径的第一站。如满足容量约束,判断该点能否在满足自身以及路径上相邻两点的左时间窗的情况下插至现有路径两点之间,如ad <ai<ae,则客户点i可以加至d、e两点之间。

如满足容量约束,且该点不能插入当前路径相邻两点之间,则将该点插至当前路径末位。

通过以上方法判断整个集合,可得到初始种群中的一个初始解,根据设定的种群大小重复操作,可得到初始种群。

3.1.4 选择算子

根据个体的适应度,按照一定的规则或方法,从某一代群体中选择出一些优良的个体遗传到下一代群体中。

3.1.5 交叉算子

将群体中选中的各个个体随机搭配,对每一对个体,以某一概率(交叉概率)交换它们之间的部分染色体。通过交叉,遗传算法的搜索能力得以飞跃提高。

3.1.6 变异算子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值