动态规划- 背包问题总结(二)

什么是动态规划

动态规划通过额外的空间将已经搜索过的相似的结果(指某些具有相同性质解的集合)用一个数组存起来,所以DP中的状态转移看上去是某两三个值之间的推导,其实是某两三个集合之间的状态转移!

常见的背包模型

  1. 01背包问题
  2. 完全背包问题
  3. 多重背包问题
  4. 分组背包问题

传送们:动态规划- 背包问题总结(一)

多重背包模型

典型题例:

有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

示例 :

输入:第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
      接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
4 5
1 2 3
2 4 1
3 4 3
4 5 2

思路

与01背包 完全背包最后集合的划分,也就是状态计算不太一样。
最后的状态划分为第i个选0~k个的情况

代码:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 110;
int n, m;
int f[N];

int main() {

    cin >> n >> m;
    for (int i = 0; i < n; i ++) {
        int v, w, s;
        cin >> v >> w >> s;
        for (int j = m; j >= 0; j --) 
            for (int k = 1; k <= s && k * v <   = j; k ++)  //优化:选的个数*体积<总体积
                f[j] = max(f[j], f[j - k * v] + k * w);
    }

    cout << f[m] << endl;
    return 0;
}

分组背包问题

典型题例:

有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。

示例 :

输入:第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 N 组数据:
1)每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
2)每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;
3 5
2
1 2
2 4
1
3 4
1
4 5
输出:
8

思路
与多重背包问题相似,多重背包问题时分组背包问题的个例

代码:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 110;

int n, m;
int f[N]; //
int v[N], w[N], s[N];  //s[i]第i组物品的个数

int main() {

    cin >> n >> m;
    for (int i = 0; i < n; i ++) {  //枚举组别
        int s = 0;
        cin >> s;
        //循环输入每组中的物品的体积和价值
        for (int j = 0; j < s; j ++) cin >> v[i] >> w[i];

        for (int j = m; j >= 0; j --)  //
            for (int k = 0; k < s; k ++)  //枚举每组中的一个物品
                if (j >= v[k]) 
                    f[j] = max(f[j], f[j - v[k]] + w[k]);
    }
    cout << f[m] << endl;
    return 0;
}

充电站
推荐一个零声学院免费公开课程,个人觉得老师讲得不错,分享给大家:Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK等技术内容,立即学习

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
01背包问题动态规划中的一个经典问题,它的解法也非常经典,下面是我对该问题动态规划总结。 1. 状态定义 定义一个二维数组dp[i][j],其中i表示当前考虑到第i个物品,j表示当前背包容量为j,dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。 2. 状态转移方程 对于每个物品,我们可以选择将其放入背包,也可以选择不放入背包,因此状态转移方程如下: 如果不将第i个物品放入背包,则 dp[i][j] = dp[i - 1][j] 即前i-1个物品已经在容量为j的背包中的最大价值就是dp[i - 1][j]。 如果将第i个物品放入背包,则 dp[i][j] = dp[i-1][j-w[i]] + v[i] 即前i-1个物品在容量为j-w[i]的背包中的最大价值加上第i个物品的价值v[i]。 最终的状态转移方程为: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]) 3. 边界条件 当物品数量为0时,dp[0][j]都等于0;当背包容量为0时,dp[i][0]都等于0。 4. 求解最优解 最终的最大价值为dp[n][W],其中n表示物品数量,W表示背包容量。 5. 代码实现 以下是01背包问题动态规划代码实现,其中w和v分别表示物品的重量和价值,n和W表示物品数量和背包容量: ```python def knapsack(w, v, n, W): dp = [[0] * (W+1) for _ in range(n+1)] for i in range(1, n+1): for j in range(1, W+1): if j < w[i-1]: dp[i][j] = dp[i-1][j] else: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1]) return dp[n][W] ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值