- 博客(5)
- 资源 (1)
- 收藏
- 关注
原创 ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot(2022.5.27)
Contrastive Learning,长尾分布 long-tail
2022-05-27 16:08:56 673 6
原创 EXPLORING BALANCED FEATURE SPACES FOR REP-RESENTATION LEARNING(2022.5.18)
KCL,Contrastive Learning
2022-05-25 22:29:48 689 3
原创 Targeted Supervised Contrastive Learning for Long-Tailed Recognition(2022.5.14)
(一)解决的问题:数据往往呈现出长尾分布,类间严重失衡,多数类可能主导训练过程,并改变少数类的决策边界。(二)动机:提出一种平衡采样的方法,同时能够学习到统一的特征空间,使长尾分布的数据在特征空间能够更加均匀的分布。(三)之前的解决方法:尾部类进行过采样 对损失函数重新加权;缺点:这些方法过度拟合尾部类并以牺牲头部类为代价提高尾部类的性能,从而损害了学习到的特征的质量。将长尾数据重新组织为组,对每个组训练一个模型,并在多特定框架中组合单个模型。 将表征学习与分类器..
2022-05-14 13:51:23 1633 1
原创 Contrastive Learning based Hybrid Networks for Long-Tailed Image Classification(2022.5.12)
(一)解决的问题:数据的长尾分布,导致对样本分类时对多数类的偏向,使得训练出有偏分类器。(二)动机:提出了一种新的混合网络,包括监督对比损失学习图像特征和交叉熵损失分类器,以实现长尾图像分类。(三)步骤:先对输入的图像通过Backbone(比如Resnet),得到一些图像的特征分布。 上面的结构主要对特征分布进行对比学习,正样本拉近、负样本原理的操作;下面的结构是一个分类器,主要对形成的特征空间进行分类。α会随着训练的进行逐渐减小,这样做是很合理的,因为前期的话模型会注重
2022-05-12 13:38:12 1213 13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人