【Hive-优化】Hive的优化方式一(通过ClouderaManager进行参数优化)

1)HDFS副本数

dfs.replication(HDFS)

文件副本数通常情况下为3,不推荐修改,如果测试环境只有两台虚拟机,那么此处要修改为2。

2)Yarn基础配置

2.1.nodemanager配置

2.1.1.CPU配置

yarn.nodemanager.resource.cpu-vcores

  1. 表示该节点服务器上yarn可以使用的虚拟CPU个数,默认值是8,推荐将值配置与物理CPU线程数相同,如果节点CPU核心不足8个,要调小这个值,yarn不会智能的去检测物理核心数。
  2. 如何查看当前物理CPU线程数: grep ‘processor’ /proc/cpuinfo | sort -u | wc -l

2.1.2.内存配置

yarn.nodemanager.resource.memory-mb

  1. 一般nodemanager节点上的容器内存按照剩余内存的百分之八十来分配,因为要预留出百分之二十左右的内存。
  2. 例如:一共有64G 剩余50G。那么就分配50*0.8=40G 可以通过CM来查看剩余多少内存

2.1.3. 本地目录

yarn.nodemanager.local-dirs(Yarn)

  1. NodeManager 存储中间数据文件的本地文件系统中的目录列表。
  2. 如果单台服务器上有多个磁盘挂载,则配置的值应当是分布在各个磁盘上目录,这样可以充分利用节点的IO读写能力。

2.2.MapReduce内存配置

当MR内存溢出时,可以根据服务器配置进行调整。

mapreduce.map.memory.mb

为作业的每个 Map 任务分配的物理内存量(MiB),默认为0,自动判断大小。

mapreduce.reduce.memory.mb

为作业的每个 Reduce 任务分配的物理内存量(MiB),默认为0,自动判断大小。

mapreduce.map.java.opts、mapreduce.reduce.java.opts

Map和Reduce的JVM配置选项。

注意:

  1. mapreduce.map.java.opts一定要小于mapreduce.map.memory.mb;
  2. mapreduce.reduce.java.opts一定要小于mapreduce.reduce.memory.mb
  3. 格式-X
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值