【Hive-优化】Hive的优化方式一(通过ClouderaManager进行参数优化)
1)HDFS副本数
dfs.replication(HDFS)
文件副本数通常情况下为3,不推荐修改,如果测试环境只有两台虚拟机,那么此处要修改为2。
2)Yarn基础配置
2.1.nodemanager配置
2.1.1.CPU配置
yarn.nodemanager.resource.cpu-vcores
- 表示该节点服务器上yarn可以使用的虚拟CPU个数,默认值是8,推荐将值配置与物理CPU线程数相同,如果节点CPU核心不足8个,要调小这个值,yarn不会智能的去检测物理核心数。
- 如何查看当前物理CPU线程数: grep ‘processor’ /proc/cpuinfo | sort -u | wc -l
2.1.2.内存配置
yarn.nodemanager.resource.memory-mb
- 一般nodemanager节点上的容器内存按照剩余内存的百分之八十来分配,因为要预留出百分之二十左右的内存。
- 例如:一共有64G 剩余50G。那么就分配50*0.8=40G 可以通过CM来查看剩余多少内存
2.1.3. 本地目录
yarn.nodemanager.local-dirs(Yarn)
- NodeManager 存储中间数据文件的本地文件系统中的目录列表。
- 如果单台服务器上有多个磁盘挂载,则配置的值应当是分布在各个磁盘上目录,这样可以充分利用节点的IO读写能力。
2.2.MapReduce内存配置
当MR内存溢出时,可以根据服务器配置进行调整。
mapreduce.map.memory.mb
为作业的每个 Map 任务分配的物理内存量(MiB),默认为0,自动判断大小。
mapreduce.reduce.memory.mb
为作业的每个 Reduce 任务分配的物理内存量(MiB),默认为0,自动判断大小。
mapreduce.map.java.opts、mapreduce.reduce.java.opts
Map和Reduce的JVM配置选项。
注意:
- mapreduce.map.java.opts一定要小于mapreduce.map.memory.mb;
- mapreduce.reduce.java.opts一定要小于mapreduce.reduce.memory.mb
- 格式-X

最低0.47元/天 解锁文章
1606

被折叠的 条评论
为什么被折叠?



