一.使用矩阵表示连通性
二.代码展示
三.总结
使用矩阵表示连通性
首先我们说一下图的定义
图是由顶点的有穷非空集合和顶点之间边的集合组成, 通常表示为: G(V,E), 其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。
因此我们可以看出图是一种较线性表和树更加复杂的数据结构。在图形结构中,结点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关,那么就无法以数据元素在内存中的物理位置来表示元素之间的关系,也就是说,图不可能用简单的顺序存储结构来表示。而多重链表的方式,要么会造成很多存储单元的浪费,要么又带来操作的不便。因此,对于图来说,如何对它实现物理存储是个难题,在这里我们将会用到邻接矩阵。
图的邻接矩阵(Adjacency Matrix) 存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。
设图G有n个顶点,则邻接矩阵A 是一个n*n的方阵,定义为:
下图是一个无向图和它的邻接矩阵:
下面是一个有向图和它的邻接矩阵:
那我们就利用邻接矩阵来判断图的连通性问题。
先给出公式:
Mx=
M
0
M^0
M0+
M
1
M^1
M1+
M
2
M^2
M2+…+
M
(
n
−
1
)
M^(n-1)
M(n−1)
其中 M代表图的邻接矩阵,n代表顶点数
如果矩阵Mx中某元素aij==0,则表示该图为非连通图。
连通图和非连通图
在无向图中,若从顶点v到顶点w有路径存在,则称v和vv是连通的。若图G中任意两个顶点都是连通的,则称图G为连通图,否则称为非连通图。
在有向图中,若从顶点v到顶点w和从顶点w到顶点之间都有路径,则称这两个顶点是强连通的。若图中任何一对顶点都是强连通的,则称此图为强连通图。
理解公式
矩阵
M
0
M^0
M0
表示与M同型的单位阵,表示结点可以自己到达其自身;
// Step 1. Initialize accumulated matrix: M_a = I.
IntMatrix tempConnectivityMatrix = IntMatrix
.getIdentityMatrix(connectivityMatrix.getData().length);
矩阵 M 1 M^1 M1就是我们常说的邻接矩阵,也是代码中最初赋值的connectivityMatrix. mij表示从顶点i到顶点j是否存在一条边。(即直接相连)
// Step 2. Initialize M^1.
IntMatrix tempMultipliedMatrix = new IntMatrix(connectivityMatrix);
矩阵
M
2
M^2
M2
mik表示从顶点i到顶点k是否存在一条边,mkj表示从顶点k到顶点j是否存在一条边,两个值相乘,若值=1,则表示从顶点i到顶点j存在连通,若值=0,则表示从从顶点i到顶点j不存在连通。
再联系求和符号:
表示顶点 i 经过任意一个顶点到达顶点 j 的路径方式的和。假设顶点i可经过顶点a到达顶点j,也可以经过顶点b到达顶点b,则mij求和结果为2.
以此类推:
M
i
j
k
Mij^k
Mijk表示顶点 i 能否经过k条边到达顶点 j
二.代码展示
关键代码
public boolean getConnectivity() throws Exception {
// Step 1. Initialize accumulated matrix: M_a = I.
IntMatrix tempConnectivityMatrix = IntMatrix
.getIdentityMatrix(connectivityMatrix.getData().length);
// Step 2. Initialize M^1.
IntMatrix tempMultipliedMatrix = new IntMatrix(connectivityMatrix);
// Step 3. Determine the actual connectivity.
for (int i = 0; i < connectivityMatrix.getData().length - 1; i++) {
// M_a = M_a + M^k
tempConnectivityMatrix.add(tempMultipliedMatrix);
// M^k
tempMultipliedMatrix = IntMatrix.multiply(tempMultipliedMatrix, connectivityMatrix);
} // Of for i
// Step 4. Check the connectivity.
System.out.println("The connectivity matrix is: " + tempConnectivityMatrix);
int[][] tempData = tempConnectivityMatrix.getData();
for (int i = 0; i < tempData.length; i++) {
for (int j = 0; j < tempData.length; j++) {
if (tempData[i][j] == 0) {
System.out.println("Node " + i + " cannot reach " + j);
return false;
} // Of if
} // Of for j
} // Of for i
return true;
}// Of getConnectivity
add方法中我们用了resultMatrix来copy第一个矩阵,因此resultMatrix在每次循环中不断被更新,最后返回即可。因此 tempConnectivityMatrix矩阵即为我们需要的矩阵Mx。
/**
* add another matrix to mine.
* @param paramMatrix
*/
public void add(IntMatrix paramMatrix) throws Exception
{
//step1 get the data of the given matrix.
int[][] tempData=paramMatrix.getData();
//step2 check size.
if(data.length!=tempData.length)
{
throw new Exception("the row is not match");
}//of if
if(data[0].length!=tempData[0].length)
{
throw new Exception("the col is not match");
}//of if
//step3. add to mine.
for(int i=0;i<data.length;i++)
{
for(int j=0;j<data[0].length;j++){
data[i][j]+=tempData[i][j];
}//of for j
}//of for i
}//of add
/**
* add two existing matrices.
* @param paramMatrix1
* @param paramMatrix2
* @return a new matrix
*/
public IntMatrix add(IntMatrix paramMatrix1,IntMatrix paramMatrix2) throws Exception{
//step1 clone the first matrix.
IntMatrix resultMatrix=new IntMatrix(paramMatrix1);
//step2.add to the second one.
resultMatrix.add(paramMatrix2);
return resultMatrix;
}//of add
整体代码
package graph;
import matrix.IntMatrix;
/**
* Directed graph. Note that undirected graphs are a special case of directed
* graphs.
*
* @author Donghao Xu
*/
public class Graph {
/**
* The connectivity matrix.
*/
IntMatrix connectivityMatrix;
/**
* ********************
* The first constructor.
*
* @param paraNumNodes The number of nodes in the graph.
* ********************
*/
public Graph(int paraNumNodes) {
connectivityMatrix = new IntMatrix(paraNumNodes, paraNumNodes);
}// Of the first constructor
/**
* ********************
* The second constructor.
*
* @param paraMatrix The data matrix.
* ********************
*/
public Graph(int[][] paraMatrix) {
connectivityMatrix = new IntMatrix(paraMatrix);
}// Of the second constructor
/**
* ********************
* Overrides the method claimed in Object, the superclass of any class.
* ********************
*/
public String toString() {
String resultString = "This is the connectivity matrix of the graph.\r\n"
+ connectivityMatrix;
return resultString;
}// Of toString
/**
* ********************
* Get the connectivity of the graph.
*
* @throws Exception for internal error.
* ********************
*/
public boolean getConnectivity() throws Exception {
// Step 1. Initialize accumulated matrix: M_a = I.
IntMatrix tempConnectivityMatrix = IntMatrix
.getIdentityMatrix(connectivityMatrix.getData().length);
// Step 2. Initialize M^1.
IntMatrix tempMultipliedMatrix = new IntMatrix(connectivityMatrix);
// Step 3. Determine the actual connectivity.
for (int i = 0; i < connectivityMatrix.getData().length - 1; i++) {
// M_a = M_a + M^k
tempConnectivityMatrix.add(tempMultipliedMatrix);
// M^k
tempMultipliedMatrix = IntMatrix.multiply(tempMultipliedMatrix, connectivityMatrix);
} // Of for i
// Step 4. Check the connectivity.
System.out.println("The connectivity matrix is: " + tempConnectivityMatrix);
int[][] tempData = tempConnectivityMatrix.getData();
for (int i = 0; i < tempData.length; i++) {
for (int j = 0; j < tempData.length; j++) {
if (tempData[i][j] == 0) {
System.out.println("Node " + i + " cannot reach " + j);
return false;
} // Of if
} // Of for j
} // Of for i
return true;
}// Of getConnectivity
/**
* ********************
* Unit test for getConnectivity.
* ********************
*/
public static void getConnectivityTest() {
// Test an undirected graph.
int[][] tempMatrix = {{0, 1, 0}, {1, 0, 1}, {0, 1, 0}};
Graph tempGraph2 = new Graph(tempMatrix);
System.out.println(tempGraph2);
boolean tempConnected = false;
try {
tempConnected = tempGraph2.getConnectivity();
} catch (Exception ee) {
System.out.println(ee);
} // Of try.
System.out.println("Is the graph connected? " + tempConnected);
// Test a directed graph.
// Remove one arc to form a directed graph.
tempGraph2.connectivityMatrix.setValue(1, 0, 0);
tempConnected = false;
try {
tempConnected = tempGraph2.getConnectivity();
} catch (Exception ee) {
System.out.println(ee);
} // Of try.
System.out.println("Is the graph connected? " + tempConnected);
}// Of getConnectivityTest
/**
* ********************
* The entrance of the program.
*
* @param args Not used now.
* ********************
*/
public static void main(String args[]) {
System.out.println("Hello!");
Graph tempGraph = new Graph(3);
System.out.println(tempGraph);
// Unit test.
getConnectivityTest();
}// Of main
}// Of class Graph
运行结果
Hello!
This is the connectivity matrix of the graph.
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
This is the connectivity matrix of the graph.
[[0, 1, 0], [1, 0, 1], [0, 1, 0]]
The connectivity matrix is: [[2, 1, 1], [1, 3, 1], [1, 1, 2]]
Is the graph connected? true
The connectivity matrix is: [[4, 2, 1], [2, 3, 1], [1, 1, 2]]
Is the graph connected? true
三.总结
利用Mx= M 0 M^0 M0+ M 1 M^1 M1+ M 2 M^2 M2+…+ M ( n − 1 ) M^(n-1) M(n−1)能将矩阵的运算与图很好的联系起来,感觉发现了矩阵作用的新大陆。关于该公式的理解也需要加深,其中的巧妙之处在于把求和符号看成是从某顶点i到顶点j能有多少条不同的边。这里的知识其实应该用到了离散数学里的图论知识,但目前还没有学到该内容,所以得查阅相关资料来了解相关知识。