两种解法:
①向下取整 适合在有重复元素情况下, 取到左边界的值。若数组中不存在目标值,则会找到不小于目标值的值的下标。
②向上取整,适合在有重复元素情况下,取得右边界的值。若数组中不存在目标值,则会找到不大于目标值的值的下标。
class Solution {
//查找有序数组中的左边界 nums = [5,7,7,8,8,10], target = 8;
// ans = 3;
//在升序数组中找到第一个不小于target的索引
public int search(int[] nums, int target) {
//先对数组排序 正序
Arrays.sort(nums);
//左右指针
int l = 0, r = nums.length - 1;
//寻找目标值存在的下标
while (l < r) {
//防止下标越界 向下取整
int m = l + (r - l) / 2;
//目标值在中间值的右边
// 当nums[m] = target 时 只能移动右下标,移动左下标会跳过你要的值
if (nums[m] < target) {
//移动左下标
l = m + 1;
} else {
//否则移动右下标
r = m;
}
}
// l 为最终退出循环落在的下标
return l;
//return nums[l] == target ? l : -1;
}
}
class Solution {
public int search(int[] nums, int target) {
//先对数组排序 正序
Arrays.sort(nums);
//左右指针
int l = 0, r = nums.length - 1;
//寻找目标值存在的下标
while (l < r) {
// 如果是向上取整
int m = l + (r - l + 1) / 2;
if (nums[m] <= target) {
l = m;
} else {
r = m - 1;
}
}
return r;
//return nums[r] == target ? r : -1;
}
}
两种解法:
①向下取整 适合在有重复元素情况下, 取到左边界的值。若数组中不存在目标值,则会找到不小于目标值的值的下标。
②向上取整,适合在有重复元素情况下,取得右边界的值。若数组中不存在目标值,则会找到不大于目标值的值的下标。