m元素集合的n个元素子集

说明

 假设有个集合拥有m个元素,任意的从集合中取出n个元素,则这n个元素所形成的可能子集有那些?

解法

 假设有5个元素的集点,取出3个元素的可能子集如下:

{1 2 3}、{1 2 4 }、{1 2 5}、{1 3 4}、{1 3 5}、{1 4 5}、{2 3 4}、{2 3 5}、{2 4 5}、{3 4 5}

这些子集已经使用字典顺序排列,如此才可以观察出一些规则:

如果最右一个元素小于m,则如同码表一样的不断加1

如果右边一位已至最大值,则加1的位置往左移

每次加1的位置往左移后,必须重新调整右边的元素为递减顺序

所以关键点就在于哪一个位置必须进行加1的动作,到底是最右一个位置要加1?还是其它的位置?

在实际撰写程式时,可以使用一个变数positon来记录加1的位置,position的初值设定为n-1,因为我们要使用阵列,而最右边的索引值为最大 的n-1,在position位置的值若小于m就不断加1,如果大于m了,position就减1,也就是往左移一个位置;由于位置左移后,右边的元素会 经过调整,所以我们必须检查最右边的元素是否小于m,如果是,则position调整回n-1,如果不是,则positon维持不变。

代码部分

#include <stdio.h> 
#include <stdlib.h> 

#define MAX 20 

int main(void) { 
    int set[MAX]; 
    int m, n, position; 
    int i; 

    printf("输入集合个数 m:"); 
    scanf("%d", &m); 
    printf("输入取出元素 n:"); 
    scanf("%d", &n); 

    for(i = 0; i < n; i++) 
        set[i] = i + 1; 

    // 显示第一个集合 
    for(i = 0; i < n; i++) 
        printf("%d ", set[i]); 
    putchar('\n'); 
    
    position = n - 1; 

    while(1) { 
        if(set[n-1] == m) 
            position--; 
        else 
            position = n - 1; 

        set[position]++; 

        // 调整右边元素 
        for(i = position + 1; i < n; i++) 
            set[i] = set[i-1] + 1; 

        for(i = 0; i < n; i++) 
            printf("%d ", set[i]); 
        putchar('\n'); 

        if(set[0] >= m - n + 1) 
            break; 
    } 

    return 0; 
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千秋TʌT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值