卷积神经网络的基本概念——【1】卷积和池化

本文介绍了卷积神经网络如何利用滤波器检测图像特征,包括卷积操作、ReLU的非线性处理、池化层减少维度增强鲁棒性,以及全连接层进行分类的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        卷积神经网络利用滤波器(即内核)来检测图像中展示的特征,例如边缘。卷积神经网络四个主要的操作如下:

  •         卷积
  •         非线性(ReLU)
  •         池化或子采样(Sub Sampling)
  •         分类(全连接层)

一、卷积

        卷积是两股信息源交织在一起的有序的过程;亦是一个把函数转换成其它东西的操作。

        卷积已经长时间在图像处理中被用于模糊和锐化图像,但也执行其它操作如增强边缘和浮雕(emboss)。卷积神经网络增强了相邻神经元之间的局部连接模式。

        卷积层:

         卷积神经网络的第一层永远是卷积层。卷积层对输入进行卷积操作,把结果传给下一层。一个卷积操作将感受野内的所有像素转换昵称一个值。例如,如果你对一个图像进行卷积操作,相当于你把图像尺寸变小了,或者说把感受野内所有的信息变成了一个像素。最后卷积层的输出就变成了一个vector向量,如[1,2,3]这种。基于要处理问题的类型和我们希望学习的特征的种类,我们可以使用不同种类的卷积。

二、池化

        池化操作包括在特征图的每个通道上滑动一个二维的滤波器,并求出被滤波器覆盖的区域的特征和。

        对于一个维度为的 n_h{} \times n_w{} \times n_c{} 特征图,经过一个池化层获得的输出的维度为:

       

其中, n_h{} ,n_w{}, n_c{}分别为特征图的高度、宽度、通道数目。f为滤波器的大小,s为滤波器移动的步长。

        一个常见的卷积神经网络模型结构有多个卷积和池化层,一个个堆叠在一起。

        使用池化的原因:池化层被用于减少特征图的维度,由此可以减少需要学习的参数和网络中计算的次数;池化层对卷积层产生的特征图的区域中的特征进行了求和,因此,更进一步的操作是在求和的特征上进行的,而不是被卷积层产生的精准位置的特征。池化使得模型对于输入图片的特征位置的变化更具有鲁棒性。

        最大池化(max pooling):

        平均池化是将滤波器覆盖范围内的特征图中的元素取平均值。因此最大池化就是给出特征图 特定批次patch的最显著特征,即取元素最大值。示例图如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值