1209. 带分数

 n=a+b/c  ==>cn=ca+b,先枚举a,在dfs_a()的叶子结点调用dfs_c来枚举c,而后确定b的值只有一种可能,否则比如b有3个数没选则有3!即6种排列,而通过这一种控制变量推断法可以降低枚举次数来降低时间复杂度

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;

const int N=20;
int n;

bool st[N],backup[N];//记录该位置的数字有没有被使用,注意用bool节省空间
int ans=0;
bool check_b(int a,int c)//判断b中有没有与a、c中重合的元素
{
    int b=n*c-a*c;
    
    //各数不能为0
    if(!a||!b||!c)return false;
    
    //把b的每一位扣出来与st数组对比,有则不行,无则ans++
    memcpy(backup,st,sizeof st);
    while(b)
    {
        //最好一位一位看,且每次只看最低位,这样方便代码编写
        int x=b%10;
        
        if(backup[x]||!x)return false;//注意还要求x必须不为0,并且最好用backup数组,因为后面b中有该数需要标记。
        backup[x]=true;
        b/=10;
        
    }
    
    //最后还要验证一下是不是每个数都被选中过,选中则为true否则false
    for(int i=1;i<=9;i++)
        if(!backup[i])return false;

    return true;
    
    
}
void dfs_c(int u,int a,int c)
{
    if(u==n)return;//说明n个数字均已经被使用
    if(check_b(a,c)) ans++;//这时可以判断有答案了
    for(int i=1;i<=9;i++)//由于本题特殊,最好是从1~9,别把0带进去了
    {
        if(!st[i])//1~9中该数未使用则后加到数位中
        {
            st[i]=true;
            dfs_c(u+1,a,c*10+i);
            st[i]=false;//想想为什么要恢复现场
        }
    }
    
    
}


//递归返回需要恢复现场,即退回到树的递归进入的那一层
void dfs_a(int u,int a)
{
    //退出条件要想明白,很多限制条件比如类似定义域类问题
    if(a>=n)return;
    if(a) dfs_c(u,a,0);//想想为什么对c的递归写在这里,加个if(a)有什么好处
    for(int i=1;i<=9;i++)
    {
        if(!st[i])//1~9中该数未使用则后加到数位中
        {
            st[i]=true;
            dfs_a(u+1,a*10+i);
            st[i]=false;//想想为什么要恢复现场
        }
    }
    
}


int main()
{
    
    cin>>n;
    dfs_a(0,0);
    cout<<ans;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值