今天无意间做实验发现:
大的学习率(lr)对应的训练轮次(epoch)要小,如果epoch过大,会出现过拟合现象。
小的lr,其epoch要大。
学习率就是这个调整过程中的“步伐”大小,即参数更新的量。
1. 学习率和训练轮次的关系
-
大的学习率(High Learning Rate):
- 快速收敛:大的学习率会使模型参数更新得更快,因此模型可能在较少的轮次内就能接近最优解。
- 可能出现震荡:如果学习率过大,模型参数更新可能会过于剧烈,导致损失函数在最优解附近震荡,无法稳定在最优值上。
- 需要较少的轮次:由于大的学习率可以使模型较快地接近最优解,因此训练的轮次通常可以设置较小。
-
小的学习率(Low Learning Rate):
- 缓慢收敛:小的学习率会使模型参数更新得更缓慢,因此模型可能需要更多的轮次来达到较好的结果。
- 更稳定的收敛:虽然小的学习率可以避免参数更新过于剧烈,但训练过程可能会变得较慢,并且容易陷入局部最优解。
- 需要更多的轮次:由于小的学习率使得收敛过程变得缓慢,因此通常需要较多的轮次来达到较好的结果。
2. 为什么会出现这种情况?
-
优化过程:
- 大学习率:每次参数更新幅度较大,这使得模型能够快速地沿着最陡峭的方向前进,但也可能跳过最优解或在最优解附近震荡。
- 小学习率:每次参数更新幅度较小,模型在接近最优解时的调整更细致,因此可以更稳定地收敛,但需要更多的训练轮次来完成。
-
训练稳定性:
- 大学习率:可能导致训练过程中出现震荡,损失函数的值不稳定,容易导致过拟合,尤其是在训练轮次过多的情况下。
- 小学习率:训练过程更稳定,不容易出现震荡,但训练时间较长。
-
过拟合问题:
- 大学习率与少量轮次:虽然能快速收敛,但如果训练轮次过多,模型仍然可能会过拟合,因为大学习率在接近最优解时没有足够的精细调整。
- 小学习率与大量轮次:如果学习率过小,模型可能在训练数据上拟合得更细致,导致过拟合,特别是在训练轮次过多时。
3. 调整学习率和训练轮次的策略
-
初始设置:
- 可以从较大的学习率开始训练,观察模型的收敛速度和稳定性,然后逐渐减小学习率,结合早停法(Early Stopping)来防止过拟合。
-
学习率调度(Learning Rate Scheduling):
- 使用学习率调度策略,随着训练的进行逐渐降低学习率,以确保在接近最优解时有足够的精细调整。
-
交叉验证:
- 使用交叉验证来选择最佳的学习率和训练轮次,以获得最佳的模型性能。