多边形重心(内部带空洞)

本文介绍了一种利用鞋带定理求解带空洞多边形面积的方法,并通过numpy处理外多边形和内空洞,计算它们的重心。算法首先计算外多边形和空洞的面积以及质心,然后根据面积加权平均得到整体重心。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多边形面积可用鞋带定理求解,实心多边形求重心【点击】。

带空洞多边形面积公式

1. 分别计算外多边形和每个内部空洞的面积 A_outer 和A_hole_i ;

2. 分别计算它们各自的质心 G_outer 和 G_hole_i ;

3. 整体重心G_total是所有组成部分面积加权的平均。

import numpy as np

# 判断首尾是否一样的坐标,一样的话去掉。
def ensure_open_boundary(boundary_list):
    import copy
    if boundary_list[-1][0] == boundary_list[0][0] and boundary_list[-1][1] == boundary_list[0][1]:
        res_boundary_list = copy.deepcopy(boundary_list[:-1])
        return res_boundary_list
    else:
        return boundary_list

def simple_boundary_gravity_center(boundary_points_in):
    """
    :param boundary_points_in: polygon [[x1,y1],[x2,y2],[x3,y3],[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值