一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第 i层楼(1≤i≤N)上有一个数字 Ki(0≤Ki≤N)。电梯只有两个按钮:上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。
例如:3,3,1,2,5 代表了 Ki(K1=3,K2=3,……),从 1 楼开始。在 1 楼,按“上”可以到 4 楼,按“下”是不起作用的,因为没有 −2 楼。那么,从 A 楼到 B 楼至少要按几次按钮呢?
输入格式:共二行。第一行为三个用空格隔开的正整数,表示N,A,B(1≤N≤200,1≤A,B≤N)。第二行为 N 个用空格隔开的非负整数,表示 Ki。
输出格式:一行,即最少按键次数,若无法到达,则输出 -1。
样例:
输入
5 1 5
3 3 1 2 5
输出 3
题目分析:看到这个最小次数,直接就可以用广度搜索写出来。代码可以模仿题图探索的那一个。
N, A, B = map(int, input().split(' '))
k = [0] + list(map(int, input().split(' ')))
flag = [0 for _ in range(N+1)]
nex = []
nex.append([A, 0]) # 位置, 次数
while nex:
nowp = nex.pop(-1)
flag[nowp[0]] = 1
if nowp[0] == B:
print(nowp[1])
break
else:
if 0 < nowp[0] + k[nowp[0]] < N + 1 and flag[nowp[0] + k[nowp[0]]] != 1:
nex.append([nowp[0] + k[nowp[0]], nowp[1]+1])
if 0 < nowp[0] - k[nowp[0]] < N + 1 and flag[nowp[0] - k[nowp[0]]] != 1:
nex.append([nowp[0] - k[nowp[0]], nowp[1]+1])
代码思路比较简单,就不详细解释了。如果想测试一下自己解决这种类型题目的能力,还是建议写一下迷宫那个题。三维迷宫也是差不多的。